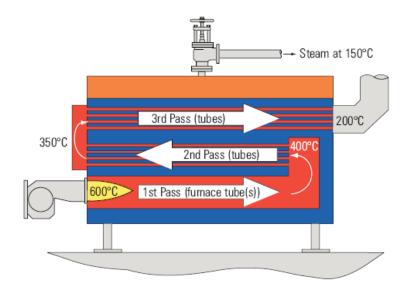
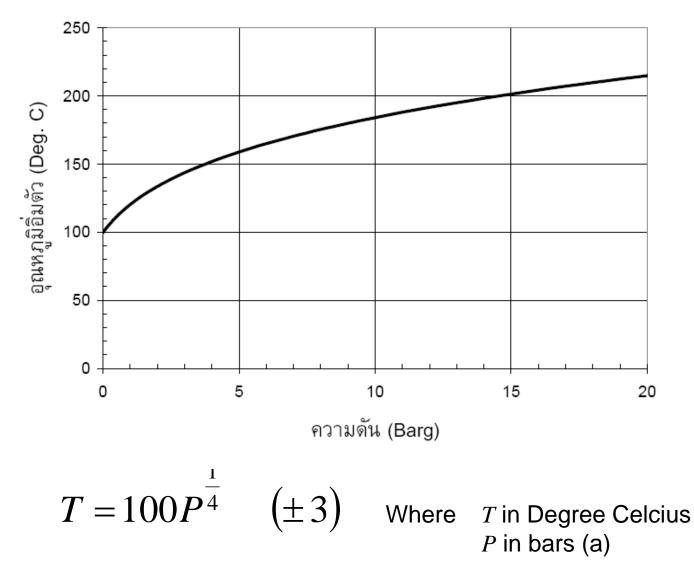
#### **ME444 ENGINEERING PIPING SYSTEM DESIGN**

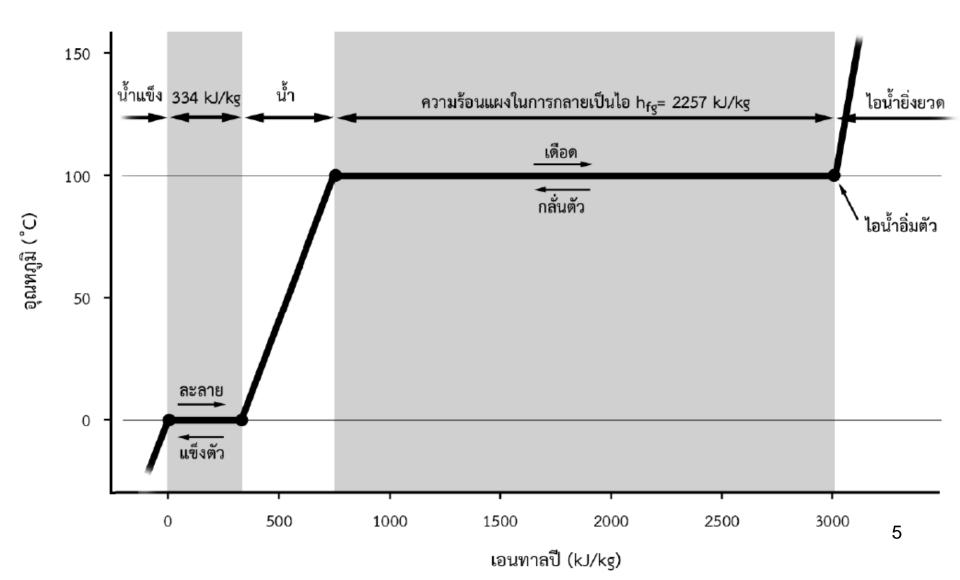

#### **CHAPTER 11: STEAM PIPING SYSTEM (1)**

# CONTENTS

- 1. INTRODUCTION
- 2. STEAM PIPING SYSTEM
- 3. STEAM PIPE SIZING


# **1. INTRODUCTION TO STEAM**

- Steam is widely used as heat transmission fluid (via its latent heat).
- Heat from steam is cheaper than heat from electricity. (about half price for heavy oil fuel)






# **SATURATION TEMPERATURE**



# **ENERGY IN STEAM AT 0 BARG**



## **STEAM TABLE**

|                   | Saturation        |                         | Volume of dry                  |                         |                          |
|-------------------|-------------------|-------------------------|--------------------------------|-------------------------|--------------------------|
| Pressure<br>bar g | temperature<br>°C | Water<br>h <sub>f</sub> | Evaporation<br>h <sub>fy</sub> | Steam<br>h <sub>g</sub> | saturated steam<br>m³/kg |
| 0                 | 100               | 419                     | 2257                           | 2676                    | 1.673                    |
| 1                 | 120               | 506                     | 2201                           | 2707                    | 0.881                    |
| 2                 | 134               | 562                     | 2163                           | 2725                    | 0.603                    |
| 3                 | 144               | 605                     | 2133                           | 2738                    | 0.461                    |
| 4                 | 152               | 641                     | 2108                           | 2749                    | 0.374                    |
| 5                 | 159               | 671                     | 2086                           | 2757                    | 0.315                    |
| 6                 | 165               | 697                     | 2066                           | 2763                    | 0.272                    |
| 7                 | 170               | 721                     | 2048                           | 2769                    | 0.240                    |

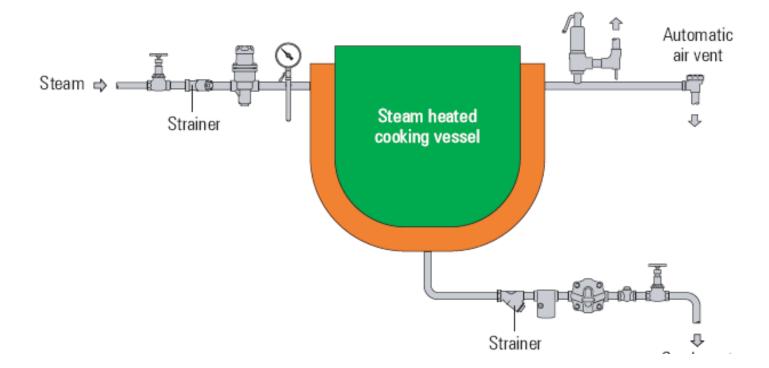
#### AT 0 BAR STEAM EXPAND 1600 TIMES THE VOLUME OF LIQUID

# **HEAT TRANSMISSION FLUIDS**

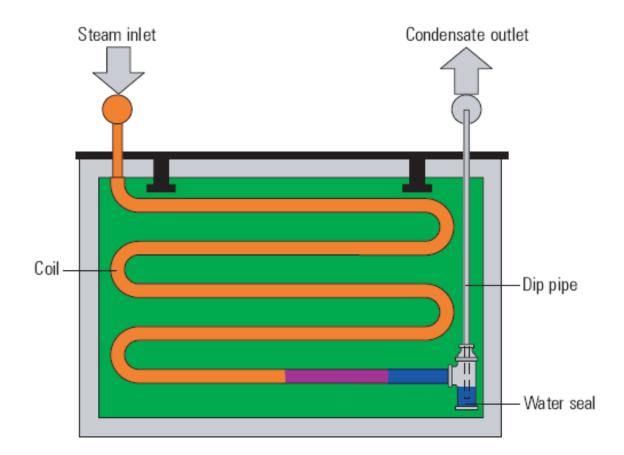
| Steam                                     | Hot water                             | High temperature oils           |  |
|-------------------------------------------|---------------------------------------|---------------------------------|--|
| High heat content                         | Moderate heat content                 | Poor heat content               |  |
| Latent heat approximately                 | Specific heat                         | Specific heat often             |  |
| 2 100 kJ/kg                               | 4.19 kJ/kg°C                          | 1.69-2.93 kJ/kg°C               |  |
| Inexpensive<br>Some water treatment costs | Inexpensive<br>Only occasional dosing | Expensive                       |  |
| Good heat transfer<br>coefficients        | Moderate coefficients                 | Relatively poor<br>coefficients |  |
| High pressure required                    | High pressure needed                  | Low pressures only              |  |
| for high temperatures                     | for high temperatures                 | to get high temperatures        |  |
| No circulating pumps required             | Circulating pumps required            | Circulating pumps required      |  |
| Small pipes                               | Large pipes                           | Even larger pipes               |  |
|                                           | More complex to control -             | More complex to control -       |  |
| Easy to control with                      | three way valves or                   | three way valves or             |  |
| two way valves                            | differential pressure valves          | differential pressure valves    |  |
|                                           | may be required                       | may be required.                |  |
| Temperature break down is                 | Temperature breakdown                 | Temperature breakdown           |  |
| easy through a reducing valve             | more difficult                        | more difficult                  |  |

# **HEAT TRANSMISSION FLUIDS**

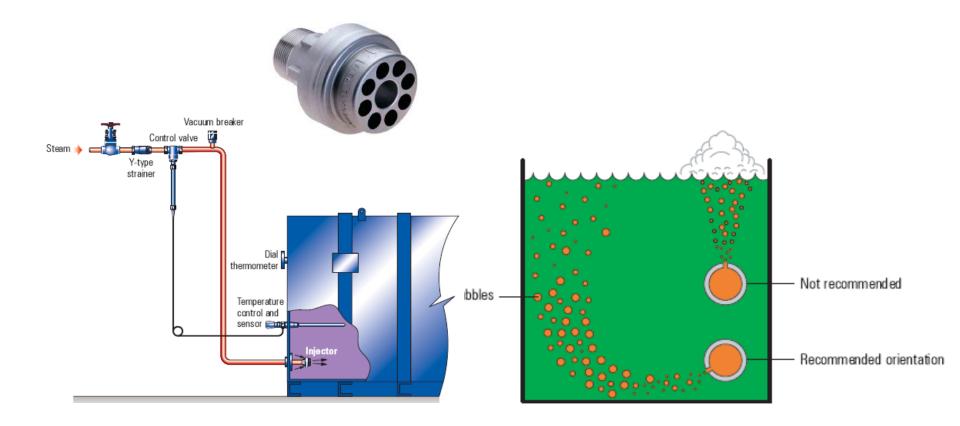
| Steam                                         | Hot water                                           | High temperature oils                                    |  |
|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--|
| Steam traps required                          | No steam traps required                             | No steam traps required                                  |  |
| Condensate to be handled                      | No condensate handling                              | No condensate handling                                   |  |
| Flash steam available                         | No flash steam                                      | No flash steam                                           |  |
| Boiler blowdown necessary                     | No blowdown necessary                               | No blowdown necessary                                    |  |
| Water treatment required to prevent corrosion | Less corrosion                                      | Negligible corrosion                                     |  |
| Reasonable pipework<br>required               | Searching medium,<br>welded or flanged joints usual | Very searching medium,<br>welded or flanged joints usual |  |
| No fire risk                                  | No fire risk                                        | Fire risk                                                |  |
| System very flexible                          | System less flexible                                | System inflexible                                        |  |


# **STEAM USERS**

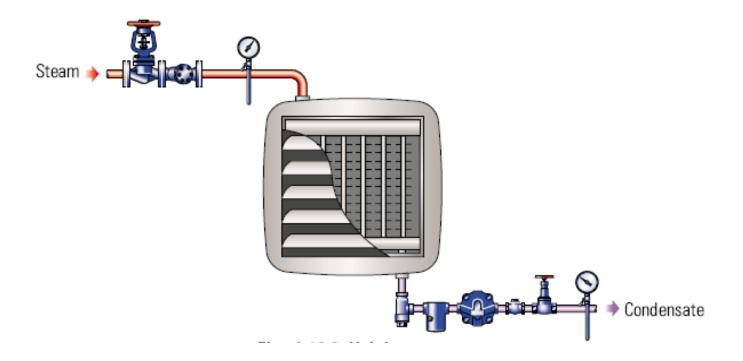
| Heavy users      | Medium users            | Light users      |  |
|------------------|-------------------------|------------------|--|
| Food and drinks  | Heating and ventilating | Electronics      |  |
| Pharmaceuticals  | Cooking                 | Horticulture     |  |
| Oil refining     | Curing                  | Air conditioning |  |
| Chemicals        | Chilling                | Humidifying      |  |
| Plastics         | Fermenting              |                  |  |
| Pulp and paper   | Treating                |                  |  |
| Sugar refining   | Cleaning                |                  |  |
| Textiles         | Melting                 |                  |  |
| Metal processing | Baking                  |                  |  |
| Rubber and tyres | Drying                  |                  |  |
| Shipbuilding     |                         |                  |  |
| Power generation |                         |                  |  |


# **APPLICATIONS OF STEAM**

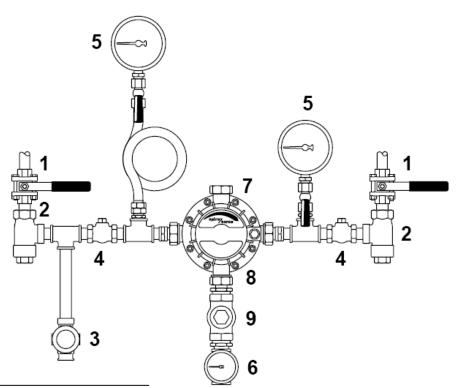
- Jacketed pan Large steel or copper pans used in the food and other industries to boil substances - anything from prawns to jam. These large pans are surrounded by a jacket filled with steam, which acts to heat up the contents.
- Autoclave A steam-filled chamber used for sterilisation purposes, for example medical equipment, or to carry out chemical reactions at high temperatures and pressures, for example the curing of rubber.
- Heater battery For space heating, steam is supplied to the coils in a heater battery. The air to be heated passes over the coils.
- Process tank heating A steam filled coil in a tank of liquid used to heat the contents to the desired temperature.
- Vulcaniser A large receptacle filled with steam and used to cure rubber.
- Corrugator A series of steam heated rollers used in the corrugation process in the production of cardboard.
- Heat exchanger For heating liquids for domestic/industrial use.
- ... Vacuum packing...
- ... Thinning organic compound, morass for example


### **JACKET VESSEL**




# **STEAM COIL**

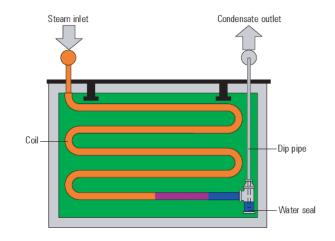



### **STEAM INJECTION**



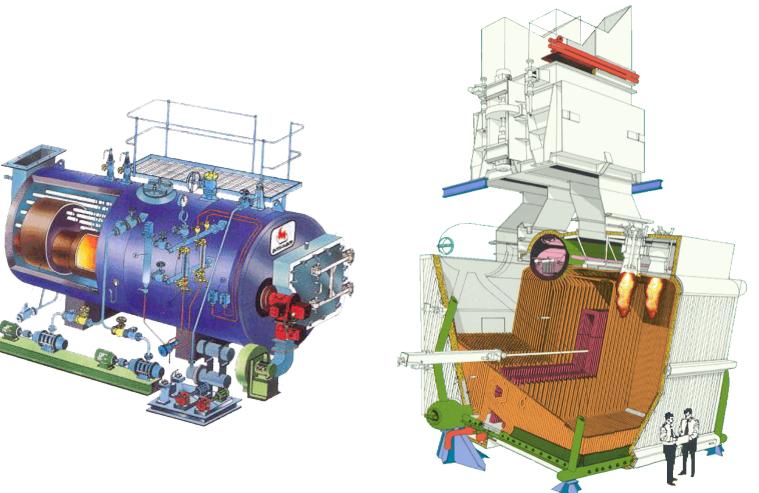
#### **AIR HEATER**



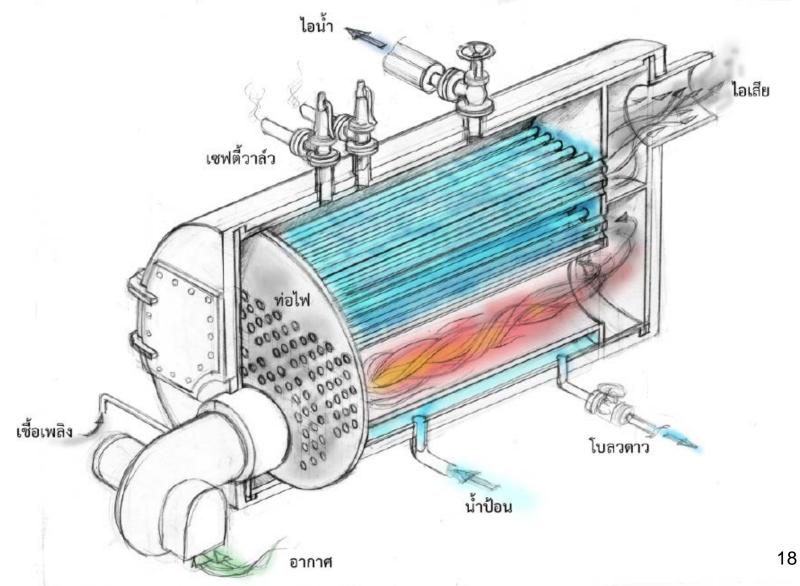

# **HOT WATER CLEANING**



- 1 Ball valve
- 2 Strainer
- 3 Steam trap
- 4 Check valve
- 5 Pressure gauge, syphon and cock
- 6 Temperature gauge
- 7 Mixing valve
- 8 Mixed water outlet
- **9** TCO1 temperature cut-out valve




# CONDENSATE




- Condensate does not transmit heat effectively. A film of condensate inside plant will reduce the efficiency with which heat is transferred.
- When air dissolves into condensate, it becomes corrosive.
- Accumulated condensate can cause noisy and damaging waterhammer.
- Inadequate drainage leads to leaking joints.

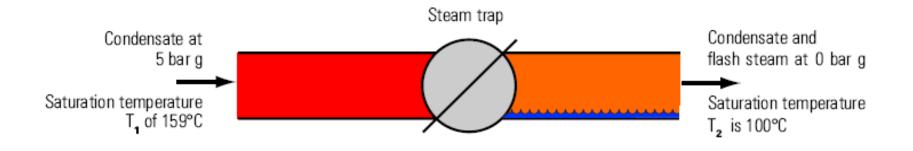
### **STEAM GENERATION**



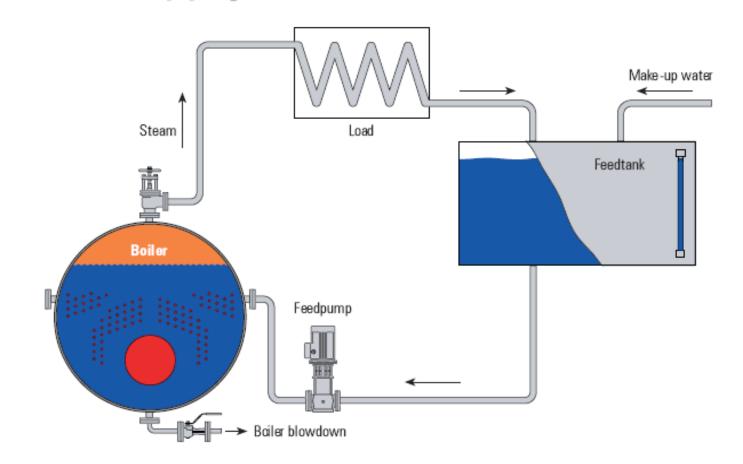
#### **FIRE TUBE BOILER**



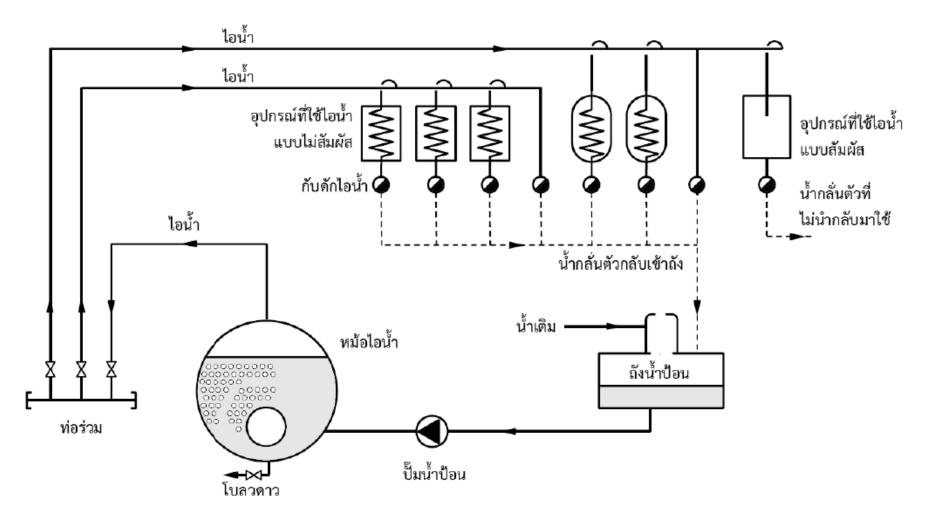
### **BOILER EXPLOSION**




### **BOILER EXPLOSION**




### **FLASH STEAM**


#### CAN STEAM BE FORMED FROM WATER WITHOUT ADDING HEAT?

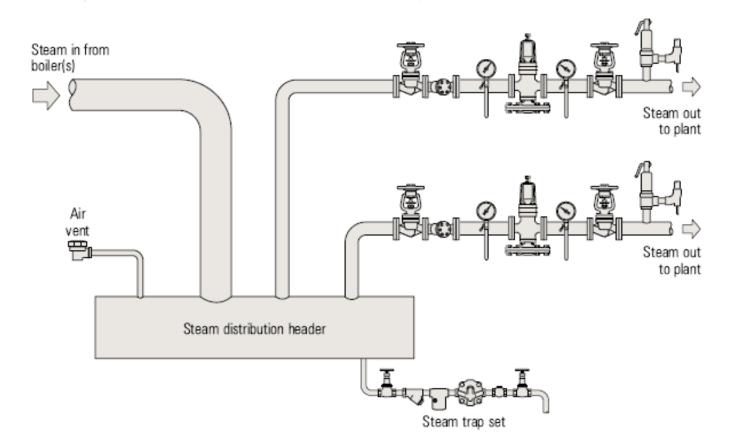


# **2. STEAM PIPING SYSTEM**

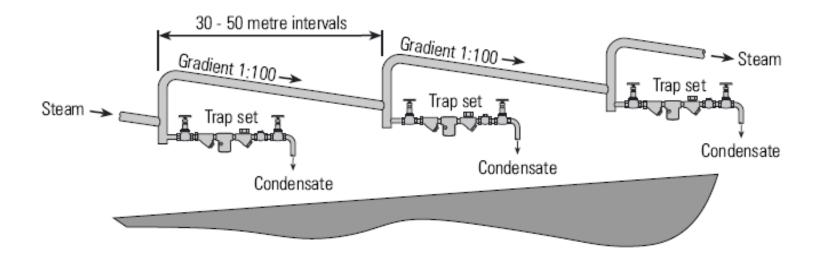


# **BASIC STEAM CIRCUIT**

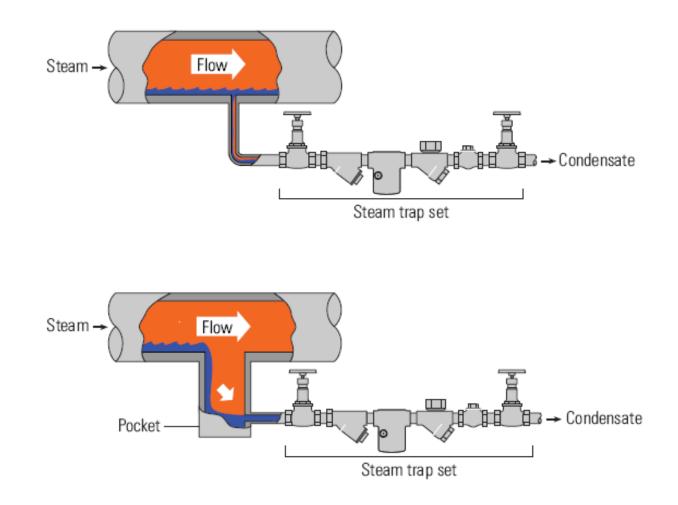




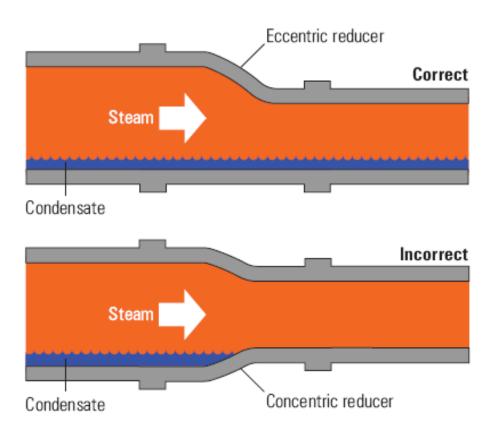

#### ตาราง 11.4 ความหนาแนะนำของท่อไอน้ำ (Bell, 2000)


| ระดับความดัน                                    | ขนาดท่อ             |                     |                     |                      |
|-------------------------------------------------|---------------------|---------------------|---------------------|----------------------|
| ความดันต่ำ                                      | DN50 ลงไป           | DN65 -              | DN250               | DN300 ขึ้นไป         |
|                                                 | ASTM A53 Sch. 40    | ASTM A53 Sch. 40    |                     | ASTM A53 10 mm. thk. |
| 0 – 1 barG                                      | Type E or S Grade B | Type E or S Grade B |                     | Type E or S Grade B  |
|                                                 | ต่อด้วยเกลียว       | ต่อด้วย B           | utt weld            | ต่อด้วย Butt weld    |
|                                                 | DN40 ลงไป           |                     | DN50 ขึ้นไป         |                      |
|                                                 | ASTM A53 Sch. 80    |                     | ASTM A53 Sch. 80    |                      |
| ความดันปานกลาง<br>และ ความดันสูง<br>1 – 20 barG | Type E or S Grade B |                     | Type E or S Grade B |                      |
|                                                 | ต่อด้วย Socket Weld |                     | ต่อด้วย Butt weld   |                      |
|                                                 | ASTM A106 Sch. 80   |                     | ASTM A106 Sch. 80   |                      |
|                                                 | Grade B             |                     | Grade B             |                      |
|                                                 | ต่อด้วย Socket Weld |                     | ต่อด้วย Butt weld   |                      |

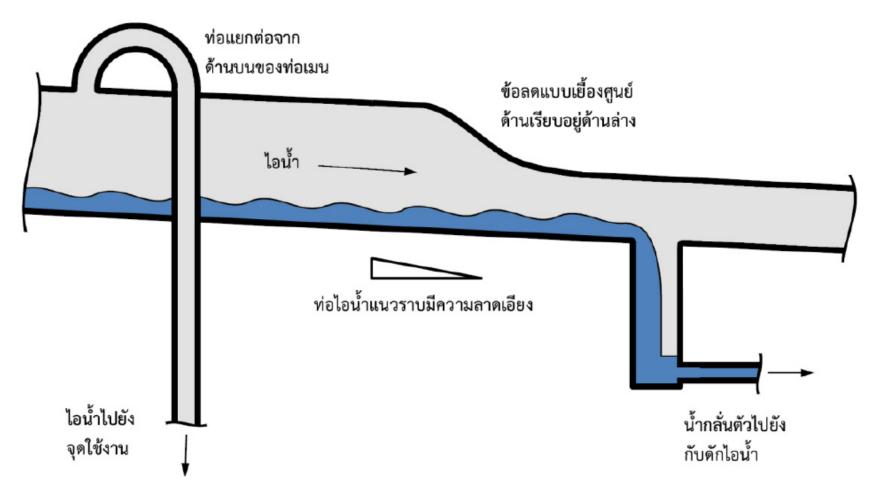
ทั้งนี้ข้อกำหนดความดันสูงสุดที่ท่อเหล็กเหนียวตามมาตรฐาน ASTM A53 และ ASTM A106 เกรด B จะรับได้ตามที่ระบุใน ASME B31.3 แสดงอยู่ในภาคผนวก ข


### **STEAM HEADER/ MANIFOLD**

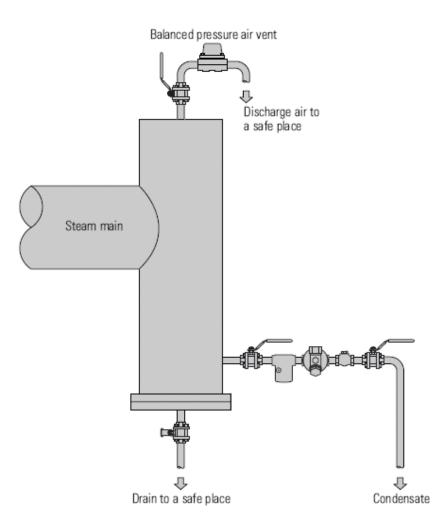



# **MAIN PIPE INSTALLATION**




# **TRAPPING CONDENSATE**




# REDUCERS

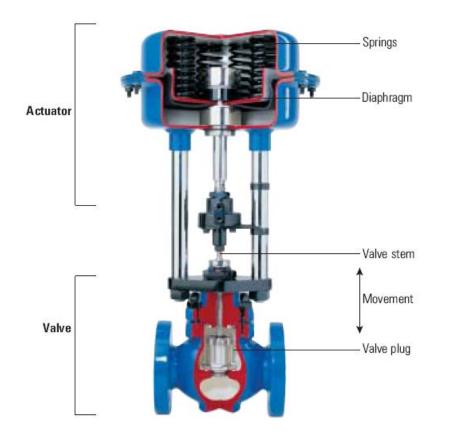


# **GENERAL INSTALLATION**



# AIRVENT

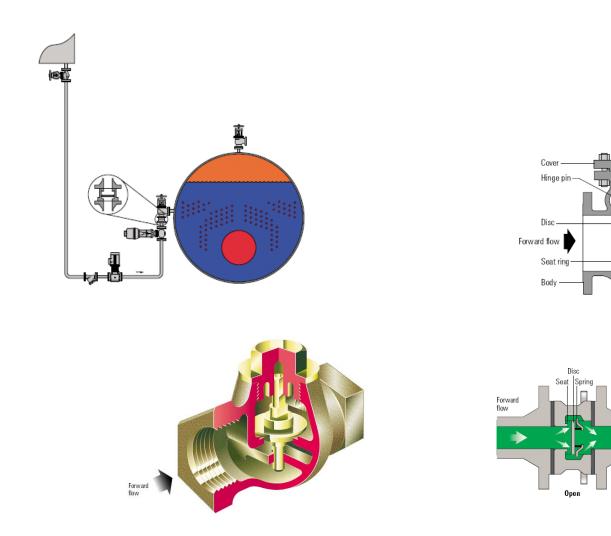





ตารางที่ 11.3 ช่วงการทำงานโดยทั่วไปของวาล์วไอน้ำ (Spirax-Sarco 2005)

| ช่วงการทำงาน |                                            |                                                                                      | ความดันตก*                                                                                                         |
|--------------|--------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ขนาด (mm)    | ความดัน (bar)                              | อุณหภูมิ (°C)                                                                        | (bar)                                                                                                              |
| 3 – 2250     | 700                                        | -196 – 675                                                                           | 0.007                                                                                                              |
| 3 – 760      | 700                                        | -196 – 650                                                                           | 0.590                                                                                                              |
| 3 - 610      | 21                                         | -50 – 175                                                                            | 0.021                                                                                                              |
| 6 - 1220     | 525                                        | -55 – 300                                                                            | 0.007                                                                                                              |
| 50 - 1830    | 102                                        | -30 – 538                                                                            | 0.120                                                                                                              |
|              | 3 - 2250<br>3 - 760<br>3 - 610<br>6 - 1220 | ขนาด (mm) ความดัน (bar)<br>3 - 2250 700<br>3 - 760 700<br>3 - 610 21<br>6 - 1220 525 | ขนาด (mm)ความดัน (bar)อุณหภูมิ (°C)3 - 2250700-196 - 6753 - 760700-196 - 6503 - 61021-50 - 1756 - 1220525-55 - 300 |

\*สำหรับไอน้ำความดัน 24 บาร์ ความเร็ว 40 m/s ไหลผ่านวาล์วขนาด DN150

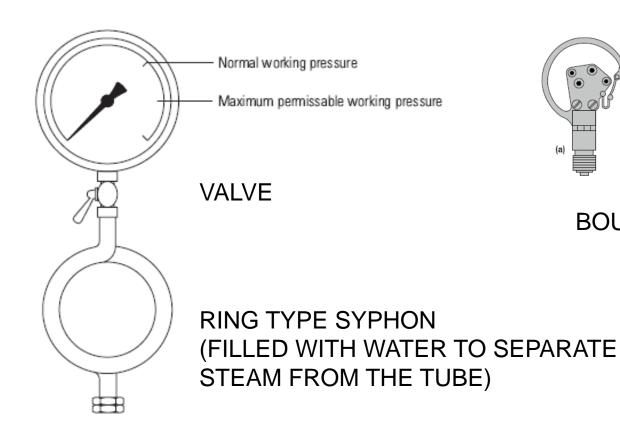


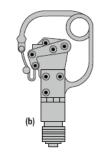





# **CHECK VALVES**

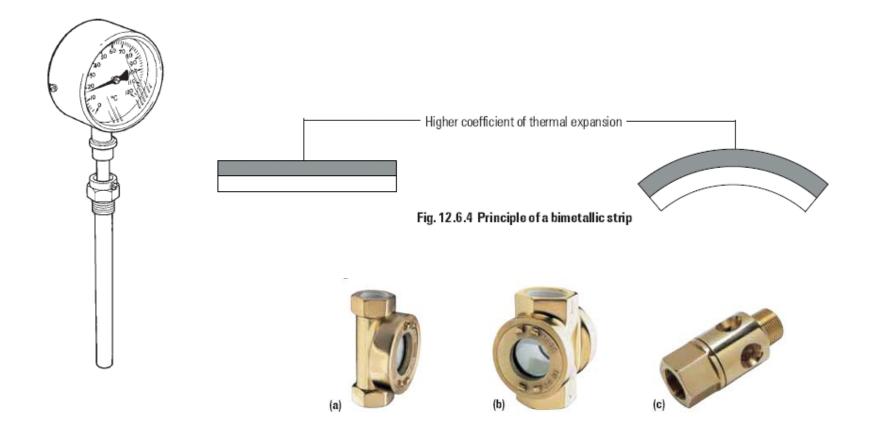
P



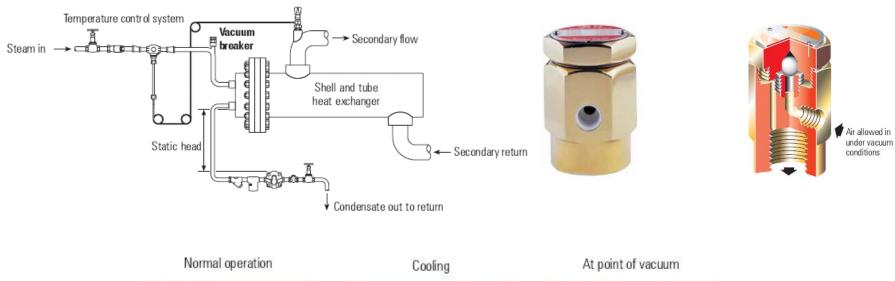

Reverse flow

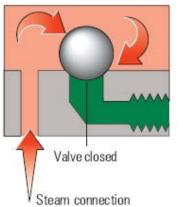
Closed


# **PRESSURE GUAGES**





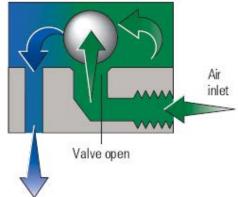

**BOURDON TUBE** 


# **TEMPERATURE GUAGES**



#### SIGHT GLASS

# **VACUUM BREAKERS**





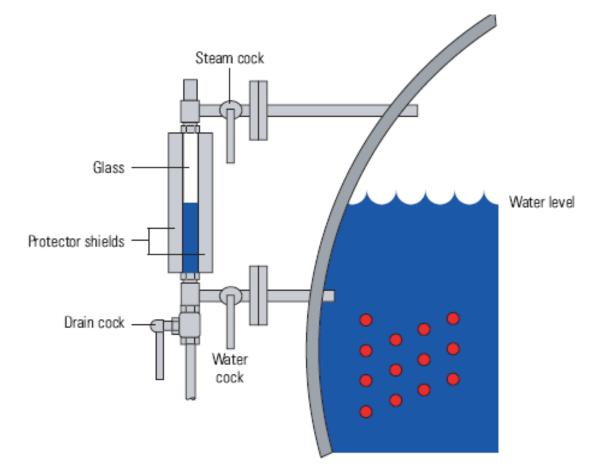



AAA

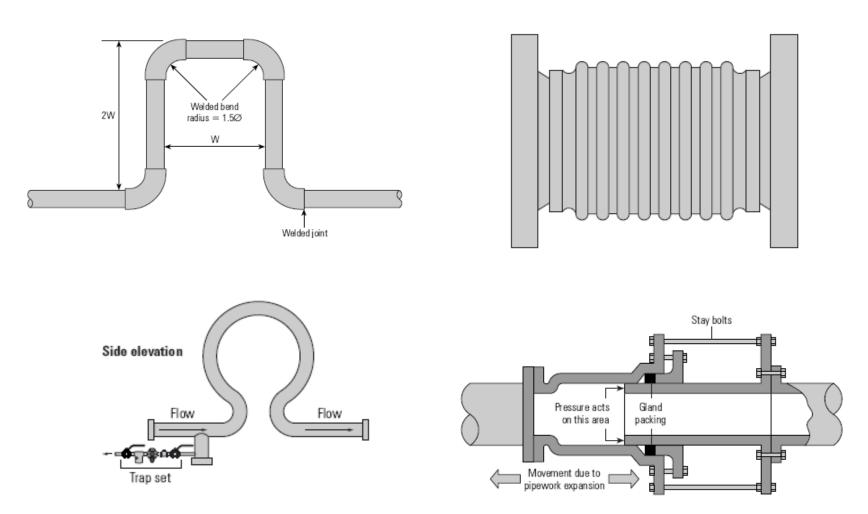
WW



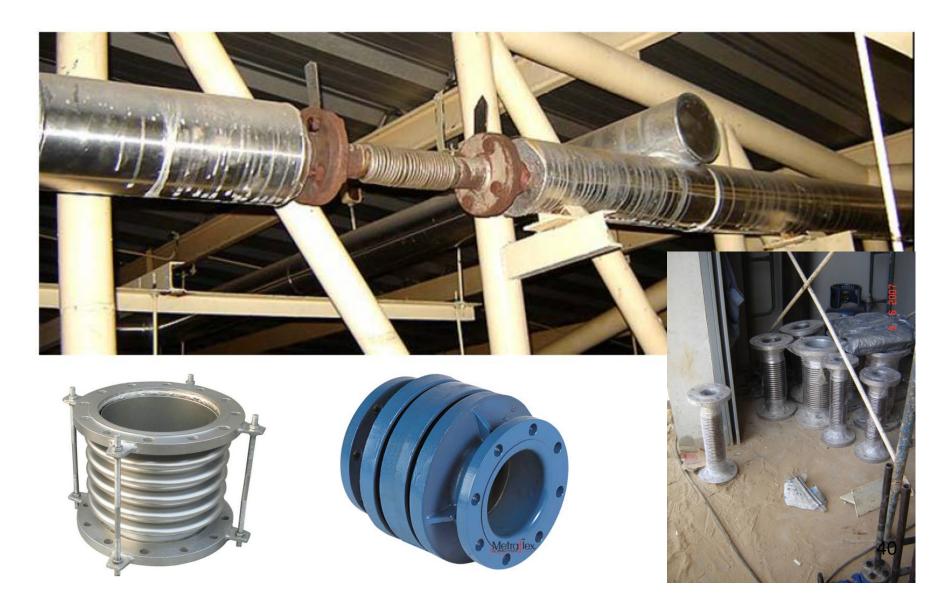
36


## **VACUUM HAZARD - IMPLODING**









# **LEVEL GUAGE GLASSES**



# **EXPANSION JOINTS**



### **EXPANSION JOINTS**



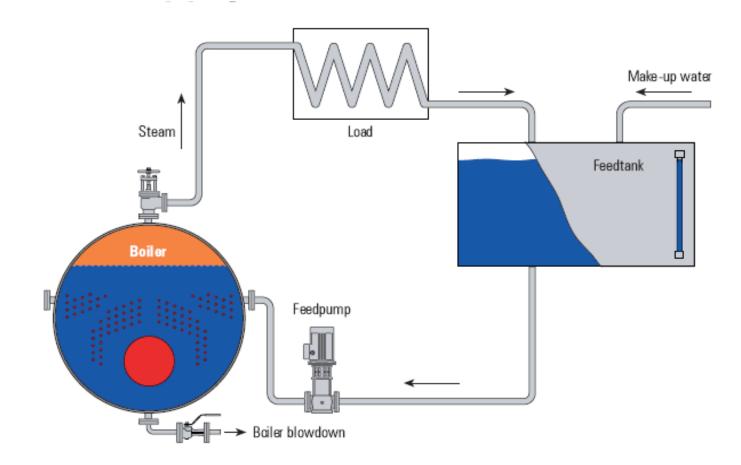
## **STEAM TRAPS**



**Ball float type** 



Thermodynamic type




Thermostatic type



Inverted bucket type

# **3. STEAM PIPING SIZING**



# **PIPE MATERIAL**

- SCHEDULE 40 STEEL PIPES RANGE FROM 15mm TO 600mm ARE SUFFICIENT FOR MOST STEAM PIPES.
- LARGE PIPES OR PIPES IN HIGH PRESSURE SYSTEM MAY BE SCH80.
- MATERIAL'S STRENGTH DECREASE WITH INCREASING TEMPERATURE.
- FOLLOW ASME B31.1 SERIES FOR POWER PIPING.

# **HEAT vs STEAM RATE**

$$\dot{q} = \frac{\dot{m}h_{fg}}{3600}$$

### เมื่อ

q คือความร้อนที่ต้องการนำไปใช้ในอุปกรณ์ (kW)
 m คืออัตราการไหลของไอน้ำในหน่วย (kg/h)
 h<sub>fg</sub> คือความร้อนแฝงในการกลายเป็นไอของน้ำที่อุณหภูมิใช้งาน (kJ/kg)

### **PIPE SIZE**

| Nominal size pipe (mm) |              | 15   | 20   | 25   | 32   | 40   | 50   | 65   | 80   | 100   | 150   |
|------------------------|--------------|------|------|------|------|------|------|------|------|-------|-------|
| Bore (mm)              | Schedule 40  | 15.8 | 21.0 | 26.6 | 35.1 | 40.9 | 52.5 | 62.7 | 77.9 | 102.3 | 154.1 |
|                        | Schedule 80  | 13.8 | 18.9 | 24.3 | 32.5 | 38.1 | 49.2 | 59.0 | 73.7 | 97.2  | 146.4 |
|                        | Schedule 160 | 11.7 | 15.6 | 20.7 | 29.5 | 34.0 | 42.8 | 53.9 | 66.6 | 87.3  | 131.8 |
|                        | DIN 2448     | 17.3 | 22.3 | 28.5 | 37.2 | 43.1 | 60.3 | 70.3 | 82.5 | 107.1 | 159.3 |

# **PIPE SIZING**

### Oversized pipework means:

- Pipes, valves, fittings, etc. will be more expensive than necessary.
- Higher installation costs will be incurred, including support work, insulation, etc.
- For steam pipes a greater volume of condensate will be formed due to the greater heat loss. This, in turn, means that either:
  - More steam trapping is required, or
  - Wet steam is delivered to the point of use.

In a particular example:

- The cost of installing 80 mm steam pipework was found to be 44% higher than the cost of 50 mm pipework, which would have had adequate capacity.
- The heat lost by the insulated pipework was some 21% higher from the 80 mm pipeline than it would have been from the 50 mm pipework. Any non-insulated parts of the 80 mm pipe would lose 50% more heat than the 50 mm pipe, due to the extra heat transfer surface area.

### Undersized pipework means:

- A lower pressure might be available at the point of use, which may hinder equipment performance.
- There is a risk of steam starvation due to an excessive pressure drop.
- There is a greater risk of erosion, waterhammer and noise due to the inherent increase in steam velocity.

### **STEAM PRESSURE DROP CHART**



47

# **PIPE SIZING METHODS**

# PIPE SIZING BASED ON VELOCITY NORMAL VELOCITY 25 - 40 m/s LOWER VELOCITY FOR LONG PIPE

PIPE SIZING BASED ON PRESSURE DROP

HIGHER STEAM PRESSURE = SMALLER PIPE

# PIPE SIZING BASE ON VELOCITY

ไอน้ำยิ่งมีความดันสูงจะยิ่งมีโอกาสเกิดความชื้นน้อยจึงสามารถออกแบบที่ความเร็วสูงมากได้ แต่ทั้งนี้หากท่อมีความยาวเกิน 50 เมตรต้องมีการตรวจสอบความดันตกด้วยเสมอ โดยอาจใช้ ความเร็วต่ำกว่า 20 m/s หากไอน้ำความดันต่ำต้องวิ่งในท่อยาวมาก

| 13 14 11 11.5 11300 14034113 13463 31130 6661 116134 106134 00460 131 (DCCC, 2004) |              |          |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|--------------|----------|--|--|--|--|--|--|--|--|
| ระดับความดัน                                                                       | ความดันไอน้ำ | ความเร็ว |  |  |  |  |  |  |  |  |
| 120106111110111                                                                    | (barG)       | (m/s)    |  |  |  |  |  |  |  |  |
| ความดันต่ำ                                                                         | 0 - 1        | 20 – 30  |  |  |  |  |  |  |  |  |
| ความดันปานกลาง                                                                     | 1 – 7        | 30 – 40  |  |  |  |  |  |  |  |  |
| ความดันสูง                                                                         | 7 – 20       | 40 – 75  |  |  |  |  |  |  |  |  |

ตารางที่ 11.5 ตัวอย่างช่วงความเร็วกระแสที่เหมาะสมของไอน้ำ (Bell, 2000)

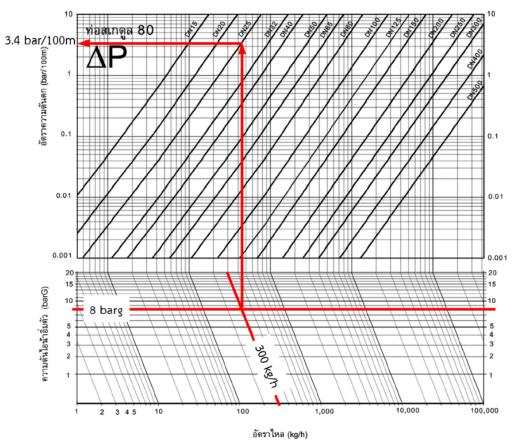
# PIPE SIZING BASE ON VELOCITY

ตารางที่ 11.7 อัตราไหลของไอน้ำอิ่มตัวที่ความเร็วต่างๆในท่อสเกดูล 40

| Р      | V     |    | อัตราไหลของไอน้ำอิ่มตัว (kg/h)  ในท่อ สเกดูล 40 |     |     |     |     |     |       |       |       |       |
|--------|-------|----|-------------------------------------------------|-----|-----|-----|-----|-----|-------|-------|-------|-------|
| (barg) | (m/s) | 15 | 20                                              | 25  | 32  | 40  | 50  | 65  | 80    | 100   | 125   | 150   |
|        | 10    | 6  | 11                                              | 17  | 29  | 41  | 67  | 98  | 148   | 255   | 401   | 579   |
| 0.5    | 20    | 12 | 21                                              | 35  | 58  | 82  | 135 | 197 | 296   | 510   | 802   | 1,158 |
| 0.5    | 30    | 18 | 32                                              | 52  | 87  | 122 | 202 | 295 | 445   | 765   | 1,203 | 1,737 |
|        | 40    | 24 | 43                                              | 69  | 116 | 163 | 269 | 394 | 593   | 1,021 | 1,604 | 2,316 |
|        | 10    | 8  | 14                                              | 23  | 38  | 53  | 88  | 129 | 194   | 334   | 525   | 758   |
| 1      | 20    | 16 | 28                                              | 45  | 76  | 107 | 176 | 257 | 388   | 668   | 1,049 | 1,515 |
| 1      | 30    | 24 | 42                                              | 68  | 114 | 160 | 264 | 386 | 582   | 1,001 | 1,574 | 2,273 |
|        | 40    | 32 | 56                                              | 91  | 152 | 214 | 352 | 515 | 775   | 1,335 | 2,098 | 3,030 |
|        | 10    | 12 | 20                                              | 33  | 56  | 78  | 129 | 188 | 283   | 488   | 767   | 1,108 |
| 2      | 20    | 23 | 41                                              | 66  | 111 | 156 | 257 | 376 | 567   | 976   | 1,534 | 2,216 |
| 2      | 30    | 35 | 61                                              | 99  | 167 | 234 | 386 | 565 | 850   | 1,464 | 2,301 | 3,323 |
|        | 40    | 47 | 82                                              | 133 | 223 | 312 | 515 | 753 | 1,134 | 1,953 | 3,069 | 4,431 |
|        |       |    |                                                 |     |     |     |     |     |       |       |       | 50    |

# PIPE SIZING BASE ON VELOCITY

ตารางที่ 11.8 อัตราไหลของไอน้ำอิ่มตัวที่ความเร็วต่างๆในท่อสเกดูล 80


| Р     | V     |    | อัตราไหลของไอน้ำอิ่มตัว (kg/h)  ในท่อ สเกดูล 80 |     |     |     |     |     |       |       |       |             |
|-------|-------|----|-------------------------------------------------|-----|-----|-----|-----|-----|-------|-------|-------|-------------|
| oarg) | (m/s) | 15 | 20                                              | 25  | 32  | 40  | 50  | 65  | 80    | 100   | 125   | 150         |
|       | 10    | 5  | 9                                               | 14  | 26  | 35  | 59  | 85  | 132   | 230   | 365   | 522         |
| 0.5 — | 20    | 9  | 17                                              | 29  | 51  | 71  | 118 | 170 | 265   | 461   | 729   | 1,045       |
| 0.5   | 30    | 14 | 26                                              | 43  | 77  | 106 | 178 | 255 | 397   | 691   | 1,094 | 1,567       |
|       | 40    | 19 | 35                                              | 58  | 103 | 142 | 237 | 340 | 530   | 922   | 1,459 | 2,090       |
|       | 10    | 6  | 11                                              | 19  | 34  | 46  | 77  | 111 | 173   | 301   | 477   | 684         |
| 1     | 20    | 12 | 23                                              | 38  | 67  | 93  | 155 | 222 | 346   | 603   | 954   | 1,367       |
| 1     | 30    | 18 | 34                                              | 57  | 101 | 139 | 232 | 333 | 520   | 904   | 1,431 | 2,051       |
|       | 40    | 25 | 45                                              | 75  | 135 | 185 | 310 | 445 | 693   | 1,206 | 1,908 | 2,734       |
|       | 10    | 9  | 17                                              | 28  | 49  | 68  | 113 | 163 | 253   | 441   | 698   | 1,000       |
|       | 20    | 18 | 33                                              | 55  | 98  | 136 | 226 | 325 | 507   | 882   | 1,395 | 1,999       |
| 2     | 30    | 27 | 50                                              | 83  | 148 | 203 | 340 | 488 | 760   | 1,323 | 2,093 | 2,999       |
|       | 40    | 36 | 66                                              | 110 | 197 | 271 | 453 | 650 | 1,013 | 1,763 | 2,791 | 3,998<br>51 |
| -     |       |    |                                                 |     |     |     |     |     |       |       |       | -           |

จงหากำหนดขนาดท่อส่งไอน้ำในอัตรา 300 kg/h ที่ความดัน 8 barG โดยใช้ท่อสเกดูล 80 ให้มีความเร็วไม่เกิน 40 m/s และหาอัตราความดันตก



| Р      | V     |     | อัตราไหลของไอน้ำอิ่มตัว (kg/h)  ในท่อ สเกดูล 80 |     |     |       |       |       |       |       |        |        |
|--------|-------|-----|-------------------------------------------------|-----|-----|-------|-------|-------|-------|-------|--------|--------|
| (barg) | (m/s) | 15  | 20                                              | 25  | 32  | 40    | 50    | 65    | 80    | 100   | 125    | 150    |
|        | 10    | 25  | 47                                              | 78  | 139 | 191   | 319   | 458   | 714   | 1,243 | 1,967  | 2,818  |
|        | 20    | 51  | 93                                              | 156 | 277 | 382   | 639   | 916   | 1,428 | 2,486 | 3,934  | 5,636  |
| 8      | 40    | 101 | 187                                             | 311 | 555 | 764   | 1,277 | 1,833 | 2,857 | 4,972 | 7,868  | 11,273 |
|        | 60    | 152 | 280                                             | 467 | 832 | 1,146 | 1,916 | 2,749 | 4,285 | 7,458 | 11,802 | 16,909 |

จากนั้นตรวจสอบอัตราความดันตกจากรูป 11.11 โดยลากเส้นอัตราไหล 300kg/h ตัดกับเส้นความ ดัน 8 barG จากนั้นโปรเจคจุดตัดขึ้นในแนวตั้งไปตัดกับเส้น DN25 แล้วอ่านค่าอัตราความดันตกได้ 3.4 bar/100m

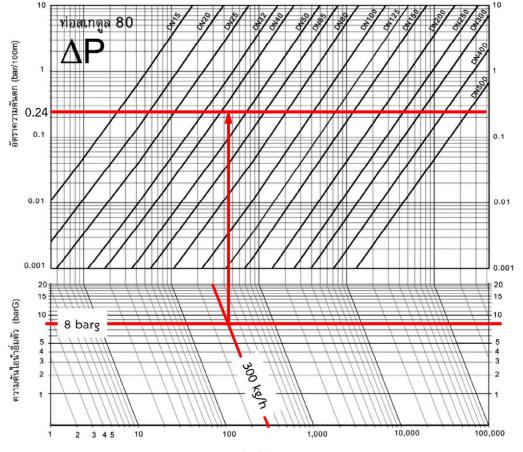


หมายเหตุ ความดันตก 3.4 bar/100 เมตรเป็นค่าที่สูง ในการติดตั้งจริงจะต้องดูความยาวของท่อด้วย หากท่อมี ความยาวมากจะต้องออกแบบโดยใช้เกณฑ์ความดันตกดังจะกล่าวต่อไป

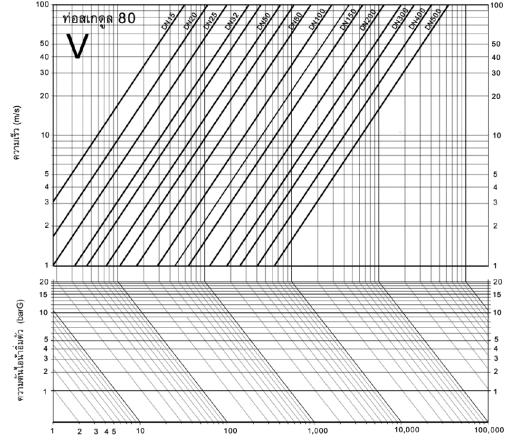
### PIPE SIZING BASE ON PRESSURE DROP

ตาราง 11.6 ความดันตกที่เหมาะสมสำหรับการออกแบบท่อไอน้ำอิ่มตัว (Bell, 2000)

| ระดับความดัน   | ความดันไอน้ำ | ความดันตก  | ความดันตกรวม |
|----------------|--------------|------------|--------------|
| วะผบความผน     | (barG)       | (bar/100m) | (bar)        |
| ความดันต่ำ     | 0 - 1        | 0.03 - 0.1 | 0.01 - 0.2   |
| ความดันปานกลาง | 1 – 7        | 0.1 - 0.45 | 0.2 – 0.7    |
| ความดันสูง     | 7 – 20       | 0.45 – 1.1 | 0.7 – 4      |


จงหากำหนดขนาดท่อส่งไอน้ำในอัตรา 300 kg/h ที่ความดันต้นทาง 8 barG เป็นระยะทาง 150 m โดยต้องการความดันที่ปลายทางไม่ต่ำกว่า 7.6 barG ให้ประมาณอัตราการเกิดน้ำกลั่นตัว เนื่องจากความร้อนสูญเสียไว้ที่ 3.5%/100 m และคิดความสูญเสียในข้อต่อและวาล์วเป็น 10% ของ ความยาวท่อ

### วิธีทำ

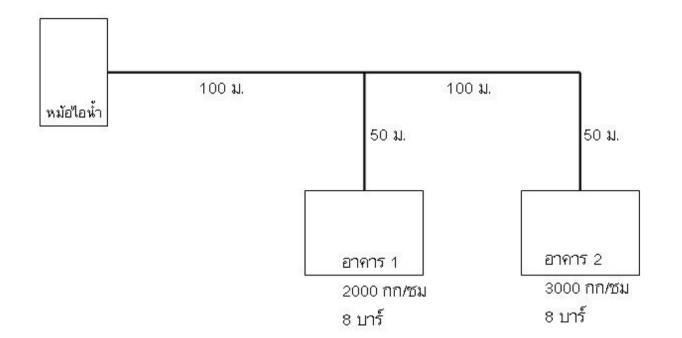

เนื่องจากมีข้อกำหนดความดันต้นทางและปลายทาง จึงควรออกแบบด้วยเกณฑ์ความดันตก ขั้นแรกคิดความยาวเทียบเท่าเป็น 150 m + 10% = 165 m

จากนั้นคำนวณความดันตกต่อ 100 m คือ  $dp = \frac{8-7.6}{165} \times 100 = 0.24$  bar/100 m แล้วคิดเผื่อความร้อนสูญเสียตามที่โจทย์แนะนำโดยการส่งไอน้ำด้วยอัตราที่เพิ่มขึ้น 3.5%/100 m คิด เป็น  $\dot{m} = 300 \times (1 + 3.5\% \times 165 / 100) = 317$  kg/h

จากนั้นใช้รูปที่ 11.11 โดยลากเส้นอัตราความดันตก 0.24 bar/100m ตัดกับอัตราไหล 300 kg/h พบว่าควรใช้ท่อ DN50 Sch80 <u>ตอบ</u>



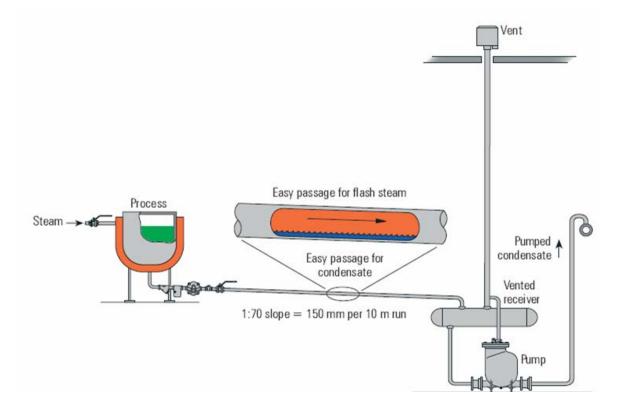
หากตรวจสอบความเร็วดูจากรูปที่ 11.12 จะพบว่าไอน้ำมีความเร็วประมาณ 6.5 m/s เท่านั้น ทั้งนี้ หากใช้วิธีออกแบบด้วยเกณฑ์ความเร็ว 40 m/s ดังตัวอย่างที่ 11.1 จะได้ขนาดท่อเพียง DN25 Sch 80 แต่มีความดันตกสูงมากเนื่องจากท่อมีความยาวมาก การออกแบบด้วยเกณฑ์ความเร็วจึงใช้ไม่ได้ ในกรณีนี้ <sup>100</sup>




อัตราไหล (kg/h)

### **EXERCISE**

11.1) ทำการคำนวณออกแบบระบบท่อไอน้ำตามขั้นตอนต่อไปนี้


- (11.1.1) จงกำหนดขนาดท่อส่งไอน้ำโดยให้ความเร็วไอน้ำไม่เกิน 30 m/s
- (11.1.2) คำนวณความดันตกสูงสุดในระบบท่อไอน้ำ
- (11.1.3) หากฉนวนที่หุ้มท่อทำให้ความร้อนสูญเสียจากท่อไม่เกิน 100 w/m จงหา อัตราการเกิดคอนเดนเสทในท่อไอน้ำ
- (11.1.4) กำหนดอัตราการผลิตไอน้ำ และ ความดัน ไอน้ำของหม้อไอน้ำ



58

# **CONDENSATE RETURN LINE**

- FOR NON-PUMP PART, SIZE AT LOW VELOCITY
- PROVIDE SLOPE
- PUMP MAY REQUIRE

