ME444 ENGINEERING PIPING SYSTEM DESIGN

CHAPTER 10A : INDUSTRIAL HOT AND CHILLED WATER UTILITY SYSTEM

CONTENT

- 1. INTRODUCTION
- 2. GENERATION PLANTS
- 3. DISTRIBUTION SYSTEM
- 4. INSULATION

1. INTRODUCTION

APPLICATIONS (OPEN LOOP SYSTEM) DOMESTIC USE INDUSTRIAL USE

- PROCESS SUPPLY
- CLEANING

CONSIDERATION

GENERATION STORAGE CIRCULATION INSULATION

2. GENERATION PLANTS

STEAM INJECTION STEAM COIL ELECTRIC HEATER GAS BURNER

HOT WATER PLANT

CHILLED WATER PLANT

7

3. DISTRIBUTION SYSTEM

BRANCH C = NON-CIRCULATED BRANCH (NOT TO BE LONGER THAN 10 METERS)

TYPICAL DISTRIBUTION SYSTEM

CIRCULATION

CIRCULATION RATE

- COMPUTE TOTAL VOLUME OF WATER IN PIPE (V)
- COMPUTE TOTAL HEAT LOSS RATE
- SPECIFY ALLOWABLE TEMPERATURE DROP
- COMPUTE TIME REQUIRED FOR TEMPERATURE TO DROP (t)
- CIRCULATION RATE > V / t

EXAMPLE

COMPUTE CIRCULATION RATE FOR: 3" PIPE 200 M. LENGTH

HEAT LOSS 25 WATT/M

TEMPERATURE DROP < 2 CELCIUS</p>

VOLUME OF WATER (V) = $\frac{\pi \times (3 \times 0.0254)^2}{4} \times 200$ = 3.65 CU.M.

HEAT LOSS RATE = 25*200 = 5000 WATT = 5 kW

HEAT LOSS FOR 2 CELCIUS DROP = $3.65m^3 \times 1000kg/m^3 \times 4.2kj/kg *2 C = 30660 kj$ TIME REQUIRED = 30660/5 = 6132 sec = 1.7 hours

MIN. CIRCULATION RATE = $3.65/1.7 = 2.15 \text{ m}^3/\text{hr} = 9.45 \text{ GPM}$

SUPPLY PIPE DESIGN TO MEET THE DEMAND PLUS MARGIN

RETURN PIPE DESIGN TO MEET THE MINIMUM CIRCULATION RATE PLUS SOME MARGIN

NORMALLY RETURN PIPES ARE ONE STEP DOWN FROM THE SUPPLY PIPE

KEEP POSITIVE PRESSURE WITH A BACK PRESSURE CONTROL VALVE

LARGE PIPE = HIGH INITIAL COST SMALL PIPE = HIGH OPERATING COST

4. INSULATION

ROCK WOOL

FIBRE GLASS

ELASTOMIC

	Cellular Glass	Flexible Elastomeric	Closed-Cell Phenolic	Polyisocyanurate	Polystyrene
Standard that specifies material and temperature requirements	ASTM C552	ASTM C534	ASTM C1126	ASTM C591	ASTM C578
Suitable temp. range, °C	-270 to 430	-30 to 104	-180 to 120	-183 to 150	-55 to 75
Flame spread rating ^a	5	25	25	25	25
Smoke developed rating ^a	0	50	50	50	115
Water vapor permeability ^b , ng/(s·m·Pa)	0.007	0.15	3.0	6.5	2.2
Thermal conductivity ^c , W/(m·K)					
At -20°C mean temperature	0.039	0.036		0.027	
At +25°C mean temperature	0.045	0.039	0.019	0.027	0.035
At +50°C mean temperature	0.048	0.042	0.022	0.030	0.037

^aTested in accordance with ASTM E84 for 25 mm thick insulation.

^bTested in accordance with ASTM E96, Procedure A. Cellular glass tested with ASTM E96, Procedure B.

°Tested at 180 days of age in accordance with ASTM C177 or C518.

TYPE OF INSULATION

GLASS FOAM AND CELLULOSE FOAM-270C TO 100CCALCIUM SELICATE100C TO 500CCERAMIC FIBRE500C UP

THERMAL CONDUCTIVITY OF HOT INSULATION

Mean Temperature °C	Calcium Silicate	Resin bonded Mineral wool	Ceramic Fiber Blankets
100	-	0.04	-
200	0.07	0.06	0.06
300	0.08	0.08	0.07
400	0.08	0.11	0.09
700	-	-	0.17
1000	-	-	0.26
Specific heat(kJ/kg/°C)	0.96	0.921	1.07
	(at 40°C)	(at 20°C)	(at 980°C)
Service temp, (°C).	950	700	1425
Density kg/m ³	260	48 to144	64 to 128

THERMAL CONDUCTIVITY OF COLD INSULATION

MATERIALS	Thermal Conductivity W/m-°C				
Mineral Or Glass Fiber Blanket	0.039				
Board or Slab					
Cellular Glass	0.058				
Cork Board	0.043				
Glass Fiber	0.036				
Expanded Polystyrene (smooth) - Thermocole	0.029				
Expanded Polystyrene (Cut Cell) - Thermocole	0.036				
Expanded Polyurethane	0.017				
Phenotherm (Trade Name)	0.018				
Loose Fill					
Paper or Wood Pulp	0.039				
Sawdust or Shavings	0.065				
Minerals Wool (Rock, Glass, Slag)	0.039				
Wood Fiber (Soft)	0.043				

INSULATION THICKNESS

CONSIDERATION THICK INSULATION – TOO COSTLY THIN INSULATION – ENERGY LOSS OPTIMUM POINT EXISTS

OTHER CONSTRAINTS HOT PIPE INSULATION

-KEEP THE SURFACE TEMPERATURE BELOW 48 C FOR HUMAN SAFETY -KEEP WATER FROM FREEZING (IN COLD WEATHER)

COLD PIPE INSULATION

-PREVENT CONDENSATION -ASHRAE RECOMMEND THE THICKNESS FOR 25 W/SQ.M HEAT GAIN

RECOMMENDED HOT PIPE INSULATION THICKNESS

FIBRE GLASS INSULATION

Fluid temp. >		120C			150C		250C			
Pipe size	THK	LOSS	Ts	THK	LOSS	Ts	THK	LOSS	Ts	
(inch)	(inch)	(w/m)	(C)	(inch)	(w/m)	(C)	(inch)	(w/m)	(C)	
0.5	0.5	14.9	42.8	1	11.7	40.0	1	18.8	47.8	
0.75	0.5	12.0	40.0	0.5	19.9	48.9	1.5	12.6	41.7	
1	0.5	16.1	44.4	1	11.7	40.6	1	19.3	48.9	
1.25	0.5	14.4	42.8	1	14.9	44.4	1.5	12.3	41.7	
1.5	0.5	17.9	47.2	1	13.5	42.8	1.5	13.8	43.3	
2	0.5	16.1	45.6	1	13.8	43.3	1.5	14.1	43.9	
2.5	0.5	16.4	46.1	1.5	7.6	36.1	1.5	12.0	41.7	
3	0.5	18.8	48.9	1	15.2	45.6	1.5	15.5	46.1	
3.5	1	7.3	35.6	1	12.0	41.7	1.5	13.5	43.9	
4	0.5	17.9	48.3	1	15.2	45.6	1.5	16.4	47.2	
5	1	9.7	38.9	1	16.1	47.2	1.5	17.3	48.9	
6	1	10.3	39.4	1	16.7	48.3	2	12.9	43.3	
8	1	9.7	39.4	1	16.1	47.8	2	13.2	44.4	
10	1	10.5	40.6	1.5	10.8	41.1	2	13.2	44.4	
12	1	9.4	39.4	1	15.8	47.8	2	13.5	45.0	

HEAT TRANSFER

 $Q_{COND} = Q_{CONV+RAD}$

CONDUCTION

$$q = k \left(\frac{A_m}{L_m}\right) \Delta t = \frac{\Delta t}{R}$$

Radial flow through a right circular cylinder

$$R = \frac{\ln(r_o/r_i)}{2\pi kL}$$

CONDUCTION IN COMPOSITE CYLINDER

Assumption: inside pipe temperature is close to fluid temperature.

CONVECTION

 $h = 1.32(\Delta t/L)^{0.25}$

 $h = 1.42(\Delta t/L)^{0.25}$

 $h = 1.31(\Delta p)^0_{2}^{33}$

 $h = 1.24(\Delta t)^{0.33}$

RADIATION

$$Q_{RAD} = \mathcal{E}\sigma\left(T_S^4 - T_A^4\right)$$

 $\sigma\,=\,5.670\,\times\,10^{-8}~W/m^2\cdot\,K^4$

CALCULATION OF HEAT LOSS

KNOW $\mathsf{T}_\mathsf{F}\mathsf{AND}\;\mathsf{T}_\mathsf{A}$ KNOW PIPE SIZE, PIPE THICKNESS AND INSULATION THICKNESS SET

 $Q_{COND} = Q_{CONV+RAD}$

$$\frac{T_F - T_S}{\ln(r_2/r_1)/2\pi k_1 L + \ln(r_3/r_2)/2\pi k_2 L} = \bar{h}A(T_S - T_A) + \varepsilon\sigma(T_S^4 - T_A^4)$$

SOLVE FOR T_s

CALCULATION SHEET

Pipe Heat Loss							
		3.48499					
Convection and Radiation							
Convection coefficient	h=	4.979309	w/m2 (10-20)		Qconvection	40.53	w/m
Stafan-Boltzman coefficient	sigma=	5.67E-08	w/m2.k4		Qradiation	22.99	w/m
Emissivity	eps=	0.4					
					k/h	0.008434906	m
Conduction							
	Nominal Dia	Thickness	OD	k	ri	ro	1/R
	(inch)	(inch)	(inch)	(w/m.K)	(m)	(m)	
Pipe	2	0.154	2.375	50	0.026	0.030	0.00278
Insulation		1	4.375	0.042	0.030	0.056	14.54545
Cladding		0.039	4.454	50	0.056	0.057	0.00036
						Sum	14.54859
Fluid temperaure	200	С	Qconv+rad	64	watt/m		
Ambient Temperature	30	С	Qconduction	64	watt/m		
Surface Temperature	52.90546182	С	Residual	0.0%			

HEAT LOSS TABLE

(SEE THE FULL TABLE IN THE BOOK)

Heat loss from metal pipe insulated with glass fiber (ASTM C547) located outdoor under 32 km/hr wind (watt/m)

Insulation	dT						Nomi	nal Pipe	Size					
thickness	(C)	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	5	6	7	8
1/2"	5	1.3	1.6	1.9	2.1	2.4	3.0	3.5	4.0	4.8	6.9	8.8	11.0	12.8
	10	2.7	3.2	3.8	4.4	5.0	5.9	7.0	8.2	10.0	14.3	18.1	22.4	26.2
	20	5.4	6.2	7.5	8.8	10.2	11.8	14.0	16.5	20.5	28.9	36.8	45.2	53.1
	30	8.1	9.4	11.3	13.3	15.5	17.8	21.1	24.9	31.1	43.7	55.7	68.3	80.4
	50	13.9	16.3	19.3	23.0	26.5	30.7	36.1	42.5	53.2	75.1	95.7	117.1	137.9
	80	23.1	27.1	32.0	38.2	44.2	51.1	59.9	70.8	88.2	125.0	159.0	194.7	229.0
	100	29.7	34.8	41.1	49.1	56.8	65.6	76.9	91.0	113.3	160.3	204.1	249.8	293.8
	120	36.6	42.9	50.7	60.5	70.0	80.8	94.9	112.2	139.8	197.7	251.7	307.9	362.1
1"	5	0.8	1.1	1.1	1.3	1.6	1.6	1.9	2.1	2.7	3.7	4.8	5.9	6.9
	10	1.7	2.1	2.3	2.7	3.2	3.3	3.9	4.5	5.6	7.8	9.9	12.0	14.2
	20	3.4	4.1	4.7	5.4	6.2	6.8	7.9	9.4	11.5	15.8	20.1	24.4	28.7
	30	5.2	6.1	7.1	8.1	9.4	10.4	12.0	14.2	17.5	24.0	30.4	37.0	43.4
	50	9.1	10.4	12.0	13.9	15.8	18.1	20.8	24.3	29.9	41.4	52.1	63.6	74.3
	80	15.1	17.4	20.0	23.4	26.5	30.0	34.8	40.5	49.7	68.8	86.8	105.6	123.6
	100	19.6	22.3	25.7	30.0	34.0	38.7	44.6	52.0	63.7	88.5	111.4	135.8	158.9
	120	24.2	27.5	31.7	37.0	41.9	47.7	55.1	64.2	78.6	109.4	137.6	167.7	196.1