ME444 ENGINEERING PIPING SYSTEM DESIGN

CHAPTER 5 : PIPE SIZING

LAST SESSION

- 1. CHARACTERISTICS OF FLOW
- 2. BASIC EQUATIONS
- 3. PRESSURE DROP IN PIPE
- 4. ENERGY BLANCE IN FLUID FLOW

CONTENTS

- 1. PIPING SYSTEM DESIGN PROCEDURE
- 2. PIPE THICKNESS
- 3. PIPE SIZING AND SYSTEM PRESSURE DROP

1. PIPING SYSTEM DESIGN PROCEDURE

Always works from the output then determine the input and the piping system

DESIGN PROCEDURE

- Study system specification, type and properties of <u>fluid</u>.
- 2. Determine <u>material</u> specification, pressure rating, temperature rating of equipment.
- 3. Gather <u>end user</u> requirements: location, pressure, temperature, flow rate.
- 4. Consider the availability of the <u>source</u>. Is there enough pressure and flow rate?

DESIGN PROCEDURE (2)

- 5. Study architectural drawings. Design the <u>path</u> of the pipeline. Determine the use of valves and other accessories.
- 6. Perform detail design: pipe sizing.
- 7. <u>Pump</u> selection (if required)
- 8. For power piping system, evaluate <u>strength</u> of pipes.

DESIGN PROCEDURE (3)

- 9. Create drawings of the plan, schematic and detail installation.
- 10. Adjust the drawing to combine with other systems.
- 11. Evaluate construction cost.

2. PIPE THICKNESS

ASME B31

Adjust the Barlow equation to account for other factors.

Material Strength

ASTM Specification	Grade	Туре	Manufacturing Process	Available Sizes, mm	Minimum Tensile Strength, MPa	Basic Allowable Stress <i>S</i> , MPa	Joint Efficiency Factor <i>E</i>	Allowable Stress ^b <i>S_E</i> , MPa	Allowable Stress Range ^c <i>S_A</i> , MPa
A53 Steel	_	F	Cont. Weld	15 to 100	310	77.5	0.6	46.5	117
A53 Steel	В	S	Seamless	15 to 660	413	103	1.0	103	155
A53 Steel	В	Е	ERW	50 to 500	413	103	0.85	87.6	155
A106 Steel	В	S	Seamless	15 to 660	413	103	1.0	103	155
B88 Copper	_		Hard Drawn	8 to 300	248	62	1.0	62	93.1

^aListed stresses are for temperatures to 340°C for steel pipe (to 205°C for Type F) and to 120°C for copper tubing. ^bTo be used for internal pressure stress calculations in Equations (1) and (2).

° To be used only for piping flexibility calculations; see Equations (3) and (4).

$$t_{\min} = \frac{pD}{2(SE + py)} + A$$

Joint Efficiency Factor

Spec. no.	Class material	Description	$E_i(2)^*$	Notes
Carbon steel				
API 5L		Seamless	1.00	
		Electric resistance welded	0.85	
		Electric fusion welded, dou- ble butt, straight or spiral	0.85	
		Furnace butt welded	0.60	
A 53	Type S	Seamless	1.00	
	Type E	Electric resistance welded	0.85	
	Type F	Furnace butt welded	0.60	
A 105		Forgings and fittings	1.00	
A 106		Seamless	1.00	
A 120		Seamless	1.00	
		Electric resistance welded	0.85	
		Furnace butt welded	0.60	
A 134		Electric fusion welded, sin-	0.80	

$$t_{\min} = \frac{pD}{2(SE + py)} + A$$

Temperature Factor

(Interpolate for intermediate values) (ASME B31.1)

	Temp, °F (°C)							
	900 (482)	950	1,000	1,050	1,100	1,150 (621)		
	and below	(510)	(538)	(566)	(593)	and above		
Ferritic steels	0.4	0.5	0.7	0.7	0.7	0.7		
Austenitic steels	0.4	0.4	0.4	0.4	0.5	0.7		

$$t_{\min} = \frac{pD}{2(SE + p\mathbf{y})} + A$$

Tolerance

Type of pipe	A, in
Cast-iron pipe, centrifugally cast	0.14
Cast-iron, pit-cast	0.18
Threaded-steel, wrought-iron, or nonferrous pipe:	
³ / ₈ in and smaller	0.05
¹ / ₂ in and larger	Depth of thread
Grooved-steel, wrought-iron or nonferrous pipe	Depth of groove
Plain-end steel, wrought-iron or tube:	
1 in and smaller	0.05
1¼ in and larger	0.065
Plain-end nonferrous pipe or tube	0.000

$$t_{\min} = \frac{pD}{2(SE + py)} + A$$

3. PIPE SIZING

Recommended Velocity

Type of pipe	Velocity (m/s)
Pump discharge	2.4 - 3.6
Pump suction	1.2 – 2.1
Drain pipe	1.2 – 2.1
Header	1.2 – 4.6
Riser	0.9 – 3.0
General water supply	1.2 – 3.0
Main potable water supply	0.9 – 2.1
Boiler feed water	2.5 – 4.6

Maximum Velocity to Prevent Erosion

Service hours per year	Max. Velocity (m/s)
1500	3.66
2000	3.51
3000	3.35
4000	3.05
6000	2.74
8000	2.44

Maximum Velocity to Prevent Erosion

Recommend velocity for different pipe sizes

Small pipe \rightarrow higher drop at same velocity

Pipe [Velocity		
Inches	mm	m/s	
1	25	1	
2	50	1.1	
3	75	1.15	
4	100	1.25	
6	150	1.5	
8	200	1.75	
10	250	2	
12	300	2.65	

Case 1: Size by velocity

- 1. Determine flow rate in each section
- 2. Sizing pipe according to velocity
- 3. Compute pressure drop

Flowrate (lpm)	DN (mm)	Velocity (m/s)	Pressure Drop (m/100m)
9 (14)*	15	0.8 (1.2)	6.24 (14.2)
20 (24)*	20	1.0 (1.2)	6.72 (9.45)
39	25	1.2	6.98
78	32	1.4	6.98
120	40	1.5	6.73
230	50	1.8	6.57
390	65	2.1	6.88
670	80	2.3	6.88
1,200	100	2.4	5.31
1,850	125	2.4	3.88

Size by velocity

Example 5.1

A pipeline from A to B is used to fill the tank so that the water level is maintained between $1m^3$ and $4m^3$.

The water is used at the rate of 500 lpm for 10 minutes in every hour.

Apply 25% loss in fitting

Determine the pipe size and the required pressure at A

50 m

Example 5.1 (2)

Example 5.1 (3)

Example 5.1 (4)

Example 5.1 (4)

Case 2: Size by pressure drop

- 1. Measure the critical path
- 2. Add 25%-50% for minor loss
- 3. Compute allowable pressure drop per 100m
- 4. Extract data from the graph to form a reference table
- 5. Determine flow rate in each section
- 6. Size each section according to the table
- 7. Compute actual pressure drop

Table 5.4

ขนาดระบุ	อัตราไหลสูงสุด (เpm) ที่อัตราความดันตกต่างๆ						
UN (mm)	3 m/100m	4 m/100m	5 m/100 m	6 m/100m	7 m/100m		
15	6	7	8	8	9		
20	13	15	17	18	20		
25	25	29	32	36	39		
32	50	58	65	72	78		
40	78	91	102	113	122		
50	152	177	200	220	237		
65	252	293	330	364	393		
80	434	500	567	625	676		
100	890	1,000	1160	1183 (1,280)	1183 (1,385)		
125	1620	1,850	1,850 (2,100)	1,850 (2,320)	1,850 (2,320)		
150	2620	2,700 (3,045)		2,700 (3,350)			
200		4,600 (5,800)					
250	7,300 (9,100)						
300	10,400 (13,000)						
350	12,500 (15,700)						
400			16,400 (20,500)				
500			25,800 (32,300)				

* คิดที่ความเร็วไม่เกิน 2.4 m/s ยกเว้นตัวเลขในวงเล็บคิดที่ความเร็วไม่เกิน 3 m/s

Example 5.2

Design a main pipe to supply water from 30 m. storage tank to a factory loacated 200 m away. The water pressure at the meter in front of the factory shall be more than 2 bar(g) when the factory consumes 2000 lpm. Assume 25% minor loss.

Example 5.2 (2)

Pressure drop $\Delta p = 30-20.4 = 9.6 \text{ m.WG}.$

Equivalent pipe length 200m + 25% minor loss = 250 m

Pressure drop rate = 9.6 m.WG./ 250 m * 100 m = 3.84 m/100m

2000 lpm @ <3.84 m/100m → DN150

Example 5.3

A 2 storey factory require water supply of 20lpm at 1.5 barg to each of its 30 outlets. The horizontal pipe shall run at 1 m. below the ceiling of each floor, then drop down to the outlet 1 m. above the floor.

Example 5.3 (2)

480lpm@32 m.WG.

Example 5.3 (3)

1. Measure length of the critical path = $A \rightarrow I$

L = 10 + 50 + 30 + 20 + 20 + 50 + 2 = 182m

2. Compute equivalent length

 $L_{EQ} = 182 + 25\% = 227.5$ m

480lpm@32 m.WG.

Example 5.3 (4)

3. Compute pressure drop per 100m

Example 5.3 (6)

5. Sum up the flow in each section

Section	Sum Flow rate (lpm)	Use factor	Design Flow rate (lpm)	Length (m)
A-B				
B-C				
C-D				
D-E				
E-F				
F-G				
G-H		i -		
Н-І				

Example 5.3 (7)

6 Size the pipe and 7 compute pressure drop

Max Flowrate (lpm)	Pipe Size DN (mm)	Velocity (m/s)	Pressure drop (m/100m)	Sect n
7	15	0.6	3.94	
15	20	0.7	3.95	
29	25	0.9	4.00	A-E
58	32	1.0	3.99	B-0
91	40	1.2	3.99	C-[
177	50	1.4	3.99	D-E
293	65	1.5	3.98	E-f
500	80	1.7	3.92	F-C

Sectio n	Design Flow rate	Length	Pipe Size DN	Velocity	Pressu	re Drop
	(lpm)	(m)	(mm)	(m/s)	m/ 100m	m
A-B	480	6				
B-C	240	84				
C-D	200	20				
D-E	100	30				
E-F	80	10				
F-G	60	10				
G-H	40	10				
H-I	20	12				
						37

Example 5.3 (8)

7. Fine tuning the design.

ระดับน้ำในถังใต้ดิน EL. -0.60

Section	Design Flow rate	Length	Pipe Size DN	Velocity	Pressu	re drop
	(lpm)	(m)	(mm)	(m/s)	m/ 100m	m
A-B	480	6	80	1.677	3.63	0.22
B-C	240	84	65	1.263	2.73	2.29
C-D	200	20	65	1.052	1.94	0.39
D-E	100	30	40	1.268	4.77	1.43
E-F	80	10	40	1.015	3.13	0.31
F-G	60	10	40	0.761	1.83	0.18
G-H	40	10	40	0.507	0.87	0.09
H-I	20	12	25	0.598	2.02	0.24
					รวม	38 5.15

Example 5.3 (9)

8. Draw the pipe sizes

Comments

Actual pressure drop usually smaller than the design limit.

If there the outlets are just exits, the flow will be very high at the outlets located near the pump and very low at the last one.

 The actual operating point of the pump may vary (discussed in the next chapter)

 In actual condition there will be valves at the outlets to control the flow.

Example 5.4

Example 5.4 (2)

Required flowrate = 9 lpm/tonR x 100 tonR = 900 lpm

Example 5.4 (3)

Size the pipe for 4m/100m pressure drop At 900 lpm

อัตราไหล	ขนาดระบุ	ความเร็ว	ความดันตก
ଶ୍ବୁଏଟ୍ବ୍ବ	DN	(m/s)	(m/100m)
(lpm)	(mm)		
7 (14)*	15	0.6 (1.2)	3.94 (14.2)
15 (24)*	20	0.7 (1.2)	3.95 (9.45)
29 (40)*	25	0.9 (1.2)	4.00 (7.32)
58 (66)*	32	1.0 (1.2)	3.99 (5.09)
91	40	1.2	3.99
177	50	1.4	3.99
293	65	1.5	3.98
500	80	1.7	3.92
1,000	100	2.0	3.74
1,850	125	2.4	3.88
2,700	150	2.4	3.17

Example 5.4 (4)

At 900 lpm actual pressure drop = 3.06 m/100mSo drop in pipe = $3.06/100 \times 143 = 4.41 \text{ m.WG}$.

Pressure require at pump =

Pressure drop in pipe + Pressure drop in chiller+ Pressure required at B + Elevation

= 4.41 + 7 + 1.5 + 10.2 = 23.1 m.WG.

Comments

 Elevation is the different between suction and discharge of the pump

 During installation both pipe must be filled before pump can operate

What is the difference btw installing pump on roof and in the basement?

 In practical the condenser pipe shall be the next larger size to account for scale forming in a long run

Homework

 5.2) จงกำหนดขนาดท่อทั้งหมด และ คำนวณเฮดที่ต้องการจากปั๊มสำหรับการใช้งาน 100% โดย ต้องการให้ความดันน้ำก่อนทางออกในทุกจุดมีค่าไม่ต่ำกว่า 0.5 barG ใช้อัตราความดันตก
5m/100m ในการออกแบบ และให้เผื่อความดันสูญเสียในข้อต่อและวาล์วเป็น 25% ของการ สูญเสียในท่อตรง

