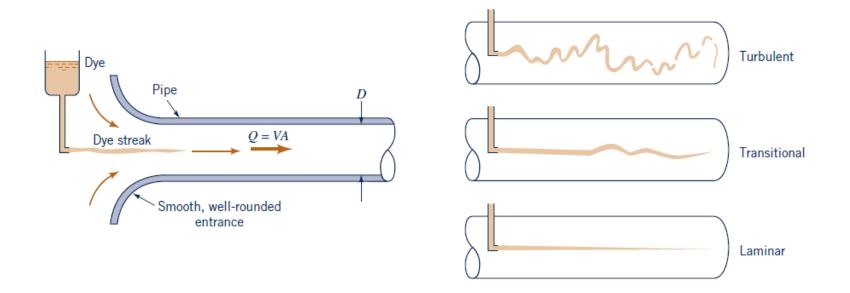

ME444 ENGINEERING PIPING SYSTEM DESIGN

CHAPTER 4 : FLOW THEORY

CONTENTS

- 1. CHARACTERISTICS OF FLOW
- 2. BASIC EQUATIONS
- 3. PRESSURE DROP IN PIPE
- 4. ENERGY BLANCE IN FLUID FLOW

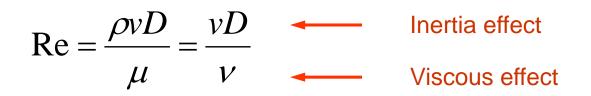
1. CHARACTERISTICS OF FLOW



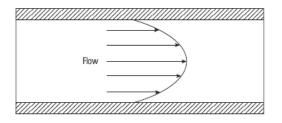
WATER AT 20°C


Properties	Symbols	Values
Density	ρ	998.2 kg/m ³
Viscosity	μ	1.002 x 10 ⁻³ N.s/m ²
(Absolute)		
Viscosity	$v = \mu / \rho$	1.004 x 10 ⁻⁶ m ² /s
(Kinematic)		

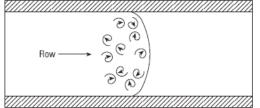
Reynold's Experiment

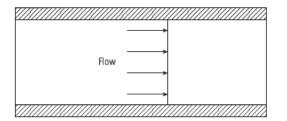

Osborne Reynolds (1842-1912) systematically study behavior of by injecting color in to a glass tube which has water flow at different speed

Reynold's Experiment

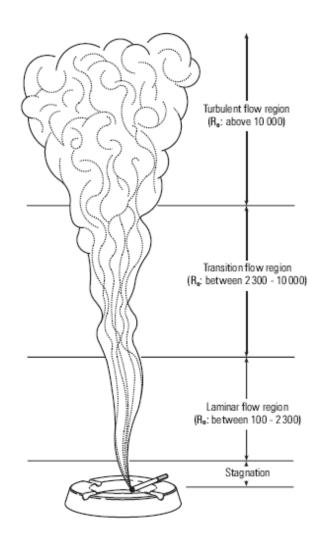

Reynold's Number

Inertia effect leads to chaos \rightarrow Turbulent


Viscous effect holds the flow in order \rightarrow Laminar


Flow Patterns

Laminar (Re < 2300)


Turbulent (Re >10,000)

Non-viscous

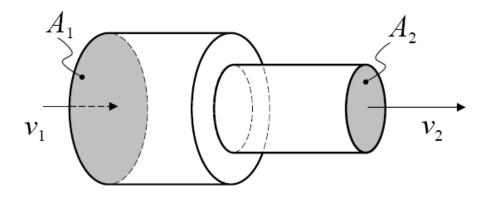
Flow Patterns

Re of flow in pipe

Low velocity flow in a DN20 SCH40 pipe at 1.2 m/s (25 lpm)

Re =
$$\frac{vD}{v} = \frac{(1.2m/s) \cdot (20.93 \times 10^{-3} m)}{(1.004 \times 10^{-6} m^2/s)} = 25,016$$

TURBULENT


2. BASIC EQUATIONS

CONSERVATION OF MASS

ENERGY EQUATION

MOMENTUM EQUATION

CONSERVATION OF MASS

MASS FLOW IN = MASS FLOW OUT:

 $\rho_1 Q_1 = \rho_2 Q_2$

INCOMPRESSIBLE FLOW:

 $A_1v_1 = A_2v_2 = Q$

ENERGY EQUATION

ENERGY IN FLUID IN JOULE / M³ IS

POTENTIAL ENERGY IN ELEVATION ho gz

POTENTIAL ENERGY IN PRESSURE p

KINETIC ENERGY

 $\frac{\rho v^2}{2}$

HEIGH UNIT IS MORE PREFERABLE → HEAD

DIVIDE THE ABOVES WITH ho g

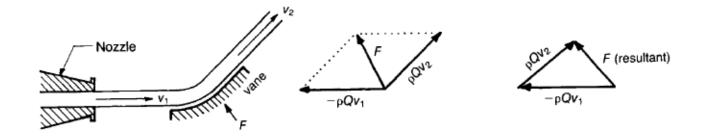
HEAD

Total head = Static pressure head + Velocity head + Elevation

GUAGE PRESSURE

ATMOSPHERIC PRESSURE IS 1 ATM = 1.013 BAR = 10.33 m. WATER

(1 BAR = 10.2 m. WATER)

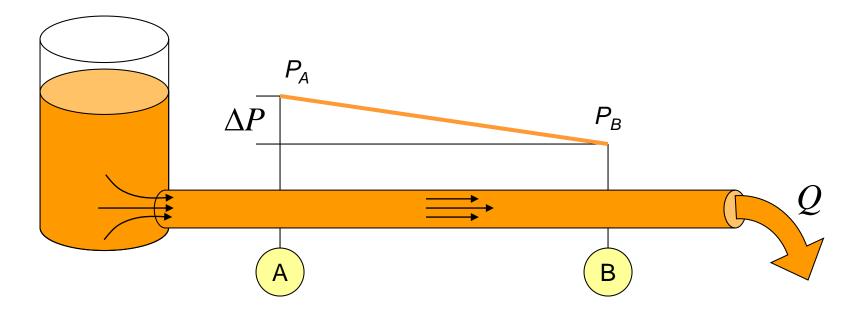

GAUGE PRESSURE IS MORE PREFERABLE IN LIQUID FLOW

$$p_{guage} = p_{abs} - p_{atm}$$

GAUGE PRESSURE IS MORE PREFERABLE IN LIQUID FLOW

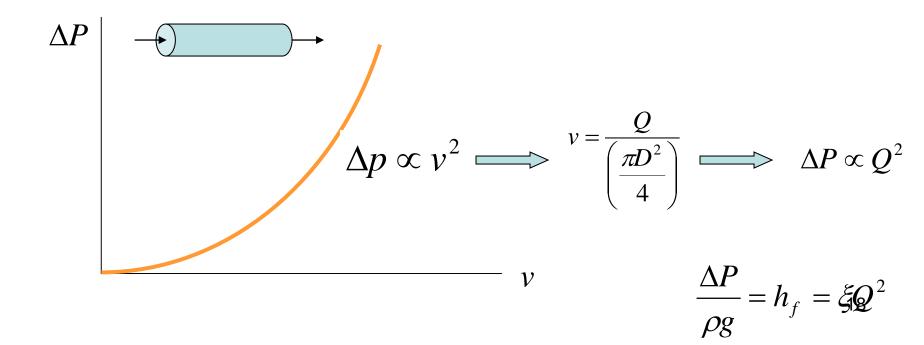
USUALLY CALLED m.WG., psig, barg

MOMENTUM EQUATION



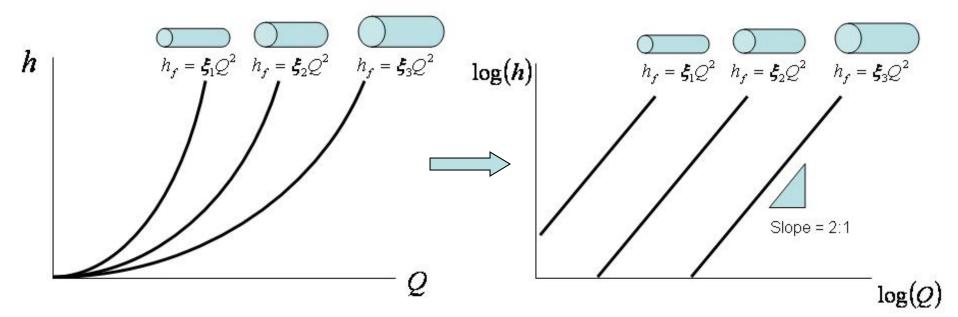
$$\vec{F} = m\frac{d\vec{v}}{dt} = \rho Q\Delta\vec{v} = \rho Q(\vec{v}_2 - \vec{v}_1)$$

MAJOR LOSS: LOSS IN PIPE


MINOR LOSS: LOSS IN FITTINGS AND VALVES

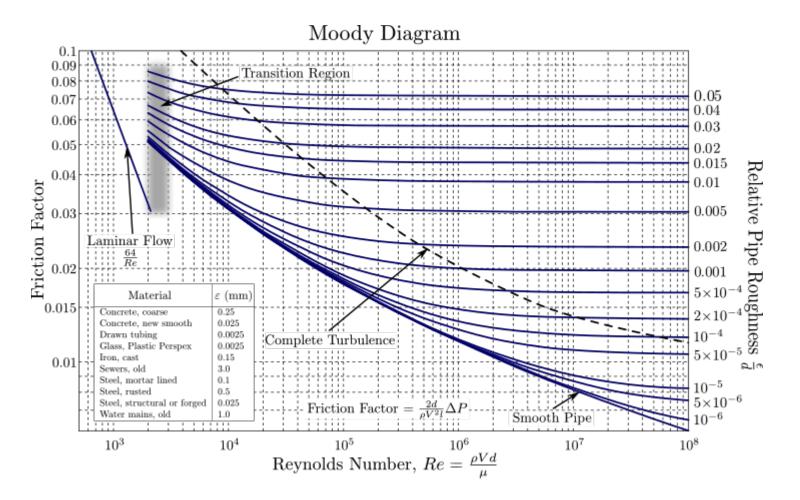
LOSS IN PIPE

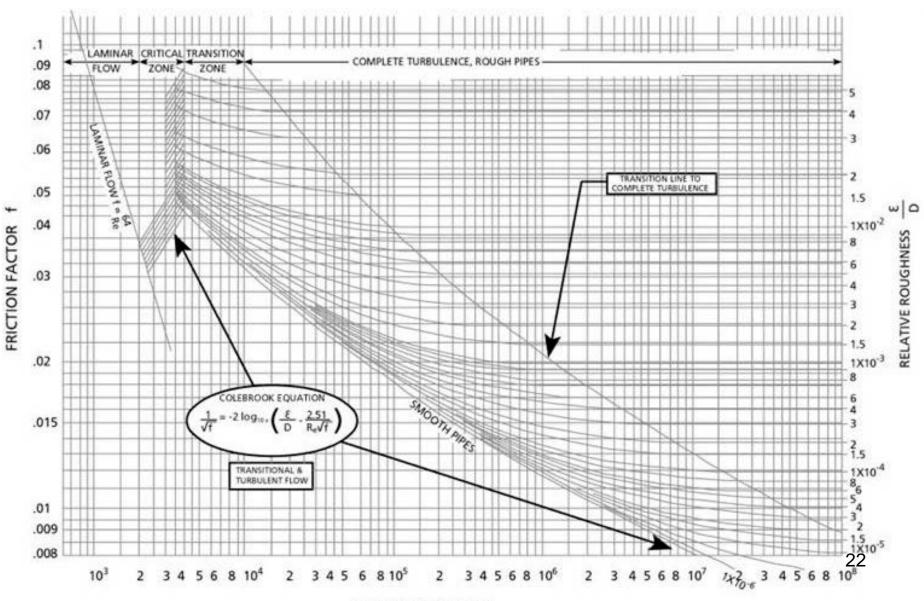
PRESSURE DROP IN PIPE IS A FUNCTION OF


FLUID PROPERTIES (DENSITY AND VISCOSITY) ROUGHTNESS OF PIPE PIPE LENGTH PIPE INTERNAL DIAMETER FLOW VELOCITY FLOWRATE

HEAD LOSS IN PIPE

$$h_f = \xi Q^2$$


 ξ varies mainly with pipe size, pipe roughness and fluid viscosity


DARCY-WEISSBACH EQUATION

DARCY FRICTION FACTOR

Detail Darcy friction factor is proposed by Lewis Ferry Moody (5 January 1880 – 21 February 1953)

MOODY DIAGRAM

DEVNIOLDC NILIMADED

Colebrook – White Equation

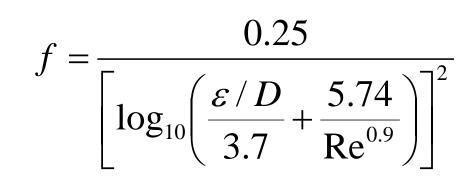
Most accurate representation of Moody diagram in Turbulence region

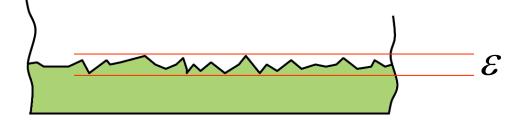
$$rac{1}{\sqrt{f}} = -2 \log \Biggl(rac{arepsilon}{3.7 D_{
m h}} + rac{2.51}{{
m Re}\sqrt{f}} \Biggr)$$

Implicit form, must be solved iteratively

APPROXIMATION OF FRICTION FACTOR IN TURBULENT REGIME

Equation	Author	Year	Range
$f=.0055\left[1+\left(2 imes10^4\cdotrac{arepsilon}{D}+rac{10^6}{ ext{Re}} ight)^{rac{1}{3}} ight]$	Moody	1947	$Re = 4000 - 5.10^8$ arepsilon/D = 0 - 0.01
$\begin{aligned} f &= .094 \left(\frac{\varepsilon}{D}\right)^{0.225} + 0.53 \left(\frac{\varepsilon}{D}\right) + 88 \left(\frac{\varepsilon}{D}\right)^{0.44} \cdot \mathrm{Re}^{-\Psi} \\ &\text{where} \\ &\Psi &= 1.62 \left(\frac{\varepsilon}{D}\right)^{0.134} \end{aligned}$	Wood	1966	$Re = 4000 - 5.10^7$ $arepsilon/D = 0.00001 - 0.04$
$rac{1}{\sqrt{f}} = -2\logigg(rac{arepsilon/D}{3.715}+rac{15}{ ext{Re}}igg)$	Eck	1973	
$rac{1}{\sqrt{f}} = -2\logigg(rac{arepsilon/D}{3.7}+rac{5.74}{ ext{Re}^{0.9}}igg)$	Swamee and Jain	1976	$Re = 5000 - 10^8$ $\varepsilon/D = 0.000001 - 0.05$
$rac{1}{\sqrt{f}} = -2\logiggl(rac{arepsilon/D}{3.71} + iggl(rac{7}{ ext{Re}}iggr)^{0.9}iggr)$	Churchill	1973	Not specified
$rac{1}{\sqrt{f}} = -2\logiggl(rac{arepsilon/D}{3.715} + iggl(rac{6.943}{ ext{Re}}iggr)^{0.9}iggr)$	Jain	1976	24

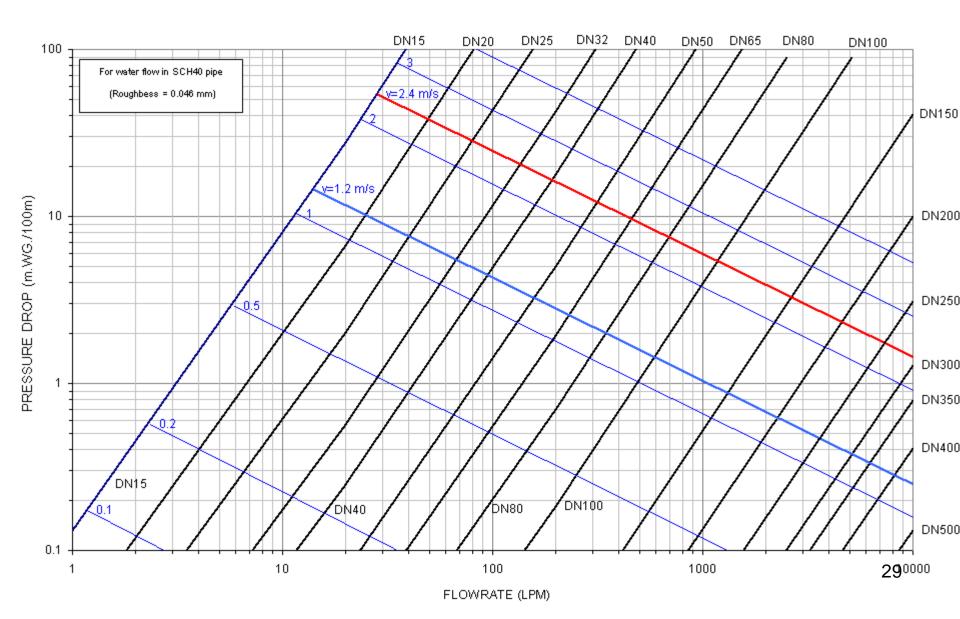

APPROXIMATION OF FRICTION FACTOR IN TURBULENT REGIME


Equation	Author	Year	Range
$f = 8 \left[\left(\frac{8}{\text{Re}}\right)^{12} + \frac{1}{(\Theta_1 + \Theta_2)^{1.5}} \right]^{\frac{1}{12}}$ where $\Theta_1 = \left[-2.457 \ln \left(\left(\frac{7}{\text{Re}}\right)^{0.9} + 0.27 \frac{\varepsilon}{D} \right) \right]^{16}$ $\Theta_2 = \left(\frac{37530}{\text{Re}}\right)^{16}$	Churchill	1977	
$\frac{1}{\sqrt{f}} = -2\log \bigg[\frac{\varepsilon/D}{3.7065} - \frac{5.0452}{\text{Re}} \log \bigg(\frac{1}{2.8257} \Big(\frac{\varepsilon}{D}\Big)^{1.1098} + \frac{5.8506}{\text{Re}^{0.8981}} \bigg) \bigg]$	Chen	1979	$Re = 4000 - 4.10^8$
$rac{1}{\sqrt{f}} = 1.8 \log iggl[rac{ ext{Re}}{0.135 ext{Re}(arepsilon/D) + 6.5} iggr]$	Round	1980	
$rac{1}{\sqrt{f}} = -2\log\!\left(rac{arepsilon/D}{3.7} + rac{4.518\log\!\left(rac{\mathrm{Re}}{7} ight)}{\mathrm{Re}\left(1+rac{\mathrm{Re}^{0.52}}{29}(arepsilon/D)^{0.7} ight)} ight)$	Barr	1981	
$\frac{1}{\sqrt{f}} = -2\log\left[\frac{\varepsilon/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{\varepsilon/D}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{\varepsilon/D}{3.7} + \frac{13}{\text{Re}}\right)\right)\right]$ or $\frac{1}{1} = -2\log\left[\frac{\varepsilon/D}{1000000000000000000000000000000000000$	Zigrang and Sylvester	1982	
$rac{1}{\sqrt{f}} = -2\logiggl[rac{arepsilon/D}{3.7} - rac{5.02}{ ext{Re}}\logiggl(rac{arepsilon/D}{3.7} + rac{ ext{13}}{ ext{Re}}iggr)iggr]$			25

APPROXIMATION OF FRICTION FACTOR IN TURBULENT REGIME

Equation	Author	Year	Range
$\frac{1}{\sqrt{f}} = -1.8 \log \left[\left(\frac{\varepsilon/D}{3.7} \right)^{1.11} + \frac{6.9}{\text{Re}} \right]$	Haaland ^[9]	1983	
$\frac{1}{\sqrt{f}} = \Psi_1 - \frac{(\Psi_2 - \Psi_1)^2}{\Psi_3 - 2\Psi_2 + \Psi_1}$ or $\frac{1}{\sqrt{f}} = 4.781 - \frac{(\Psi_1 - 4.781)^2}{\Psi_2 - 2\Psi_1 + 4.781}$ where $\Psi_1 = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{12}{\text{Re}}\right)$ $\Psi_2 = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{2.51\Psi_1}{\text{Re}}\right)$ $\Psi_3 = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{2.51\Psi_2}{\text{Re}}\right)$	Serghides	1984	
$A = 0.11 igg(rac{68}{Re} + arepsilon igg)^{0.25}$ if $A \ge 0.018$ then $f = A$ and if $A < 0.018$ then $f = 0.0028 + 0.85A$	Tsal	1989	
$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon/D}{3.7} + \frac{95}{\text{Re}^{0.983}} - \frac{96.82}{\text{Re}}\right)$	Manadilli	1997	$Re = 4000 - 10^8$ $arepsilon/D = 0 - 0.05$
$\frac{1}{\sqrt{f}} = -2\log\left\{\frac{\varepsilon/D}{3.7065} - \frac{5.0272}{\text{Re}}\log\left[\frac{\varepsilon/D}{3.827} - \frac{4.657}{\text{Re}}\log\left(\left(\frac{\varepsilon/D}{7.7918}\right)^{0.9924} + \left(\frac{5.3326}{208.815 + \text{Re}}\right)^{0.9345}\right)\right]\right\}$	Monzon, Romeo, Royo	2002	26

Swamee - Jain Equation

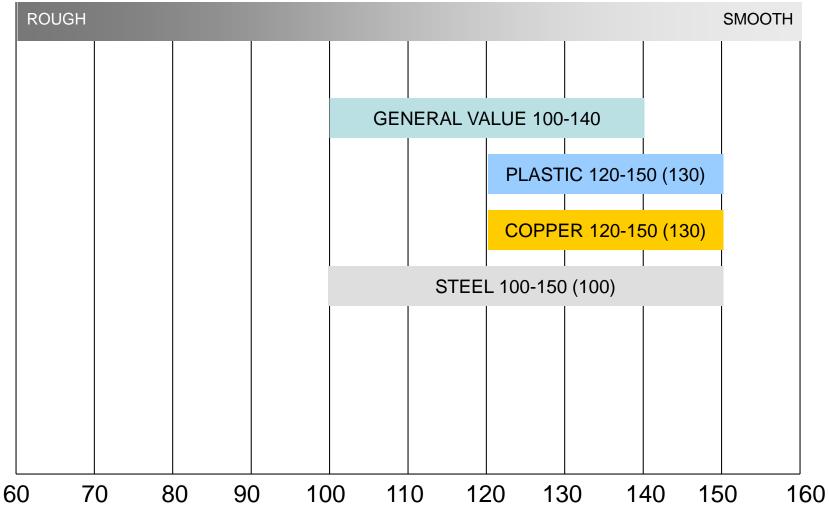

Swamee - Jain (1976)

ROUGHNESS, ε

Drawn tube Commercial steel pipe Cast iron Concrete 0.0015 mm 0.046 mm 0.26 mm 0.3 – 3 mm

ROUGHNESS INCREASES WITH TIME

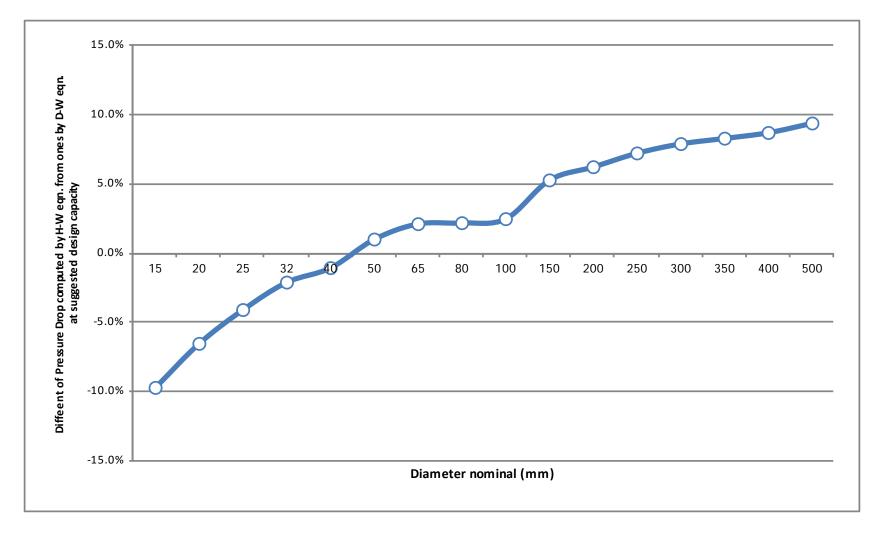
PRESSURE DROP CHART

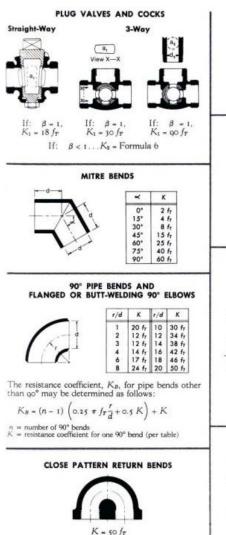

HAZEN-WILLIAMS EQUATION

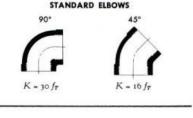
$$h_f = \left(\frac{151Q}{CD^{2.63}}\right)^{1.85}$$

- h_f in meter per 1000 meters
- Q in cu.m./s
- D in meter
- C = roughness coefficient (100-140)

NOT ACCURATE BUT IN CLOSED FORM = EASY TO USE.

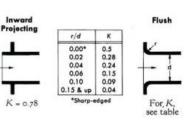

ROUGHNESS COEFFICIENT, C

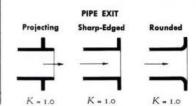

Comparison of ϵ and C

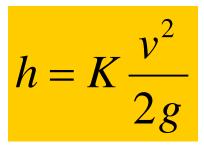

	Moody Diagram ε		
Material	mm	Hazen–Williams C	Manning n ^c
Probable range of coefficients			
Plastic, FRP, and Epoxy ^a			
≤ 400 mm (16 in.)	Smooth-0.20	140-130	0.010-0.010
= 600 mm (24 in.)	Smooth-0.20	145-135	0.009-0.010
≥ 900 mm (36 in.)	Smooth-0.20	150-140	0.009-0.010
Cement mortar lining ^a			
Centrifugally spun			
≤ 400 mm (16 in.)	0.13-0.33	135-125	0.010-0.011
= 600 mm (24 in.)	0.13-0.33	140-130	0.010-0.010
≥ 900 mm (36 in.)	0.13-0.33	145-135	0.009-0.010
Trowled in place ^a			
≤ 400 mm (16 in.)	0.20-0.50	130-120	0.010-0.011
= 600 mm (24 in.)	0.20-0.50	135-125	0.010-0.011
≥ 900 mm (36 in.)	0.20-0.50	140-130	0.010-0.010
Values below taken from the ger	eral literature ^b		
Ten-State Standards [1]			
Cement mortar or plastic	0.41	120	0.011
Unlined steel or ductile iron	1.5	100	0.013
Old pipe or lining in service for	20 yr or more and nona	ggressive water ^b	
Smooth glass or plastic	0.13	135	0.010
Cement mortar,			
centrifugally spun	0.19	130	0.010
troweled	0.28	125	0.011
Asbestos cement	0.28	125	0.011
Centrifugally cast CPP	0.19	130	0.010
Wood stave	0.89	110	0.012
Riveted steel	5.6	80	0.016
Concrete, formed	5.6	80	0.016
Clay, not pressurized	1.5	100	0.013
Wrought iron	1.5	100	0.013
Galvanized iron	3.0	90	0.014

Hazen vs. Darcy

LOSS IN FITTINGS







Flow thru run..... $K = 20 f_T$ Flow thru branch... $K = 60 f_T$

PIPE ENTRANCE

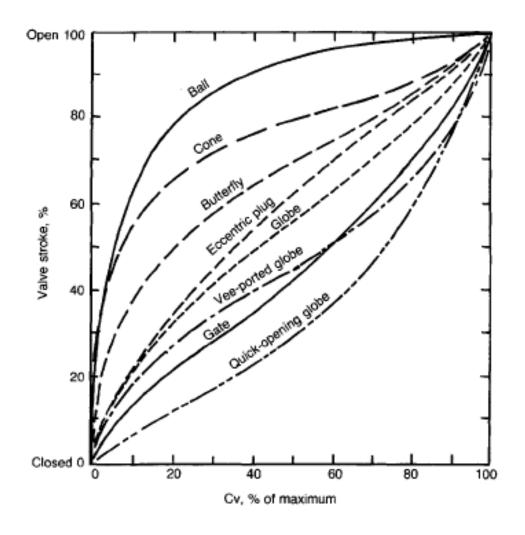
PRACTICALLY **25%-50%** IS ADDED TO THE TOTAL PIPE LENGTH TO ACCOUNT FOR LOSS IN FITTINGS AND VALVES

LOSS IN VALVES

Valve type	κ
Angle	1.8–2.9
Ball	0.04
Butterfly	
25-lb Class	0.16
75-lb Class	0.27
150-lb Class	0.35
Check valves	
Ball	0.9-1.7 but see Mfr's data for specific
	size and flowrate.
Center-guided globe style	2.6
Double door	
8 in. or smaller	2.5
10 to 16 in.	1.2
Foot	
Hinged disc	1–1.4
Poppet	5-14
Rubber flapper	
v < 6 ft/s	2.0
v > 6 ft/s	1.1
Slanting disc ^d	0.25-2.0
Swing ^d	0.6-2.2, but see Figures B-2 and B-3
Cone	0.04
Diaphragm or pinch	0.2-0.75
Gate	
Double disc	0.1-0.2
Resilient seat	0.3
Globe	4.0-6.0
Knife gate	
Metal seat	0.2
Resilient seat	0.3
Plug	
Lubricated	0.5-1.0
Eccentric	
Rectangular (80%) opening	1.0
Full bore opening	0.5

h = K2g

PRACTICALLY **25%-50%** IS ADDED TO THE TOTAL PIPE LENGTH TO ACCOUNT FOR LOSS IN FITTINGS AND VALVES

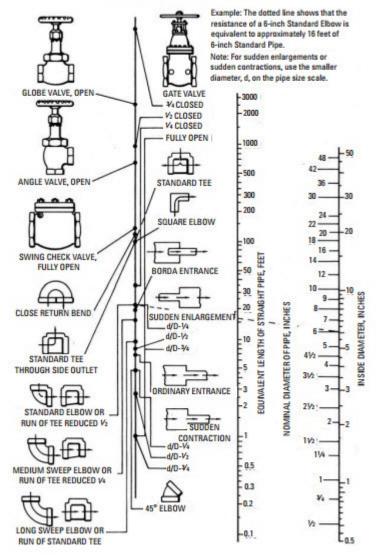

 $^{a}h = Kv^{2}/2g$, where v is the velocity in the approach piping.

^bFor 300-mm (12-in.) valves and velocities of about 2 m/s (6 ft/s). Note that K may increase significantly for smaller valves. Consult the manufacturer.

^cExpect K to vary from -20 to +50% or more.

^dDepending on adjustment of closure mechanism, velocity may have to exceed 4 m/s (12 ft/s) to open the valve fully. Adjustment is crucial to prevent valve slam.

VALVE COEFFICIENT K_v


$$K_v = Q_{\sqrt{\frac{S.G.}{\Delta P}}}$$

Q IN CU.M./HR ΔP IN BAR S.G. = SPECIFIC GRAVITY

$$K = 4.527 \times 10^7 \frac{D^4}{K_v^2}$$

EQUIVALENT LENGTH OF FITTINGS

Table 8-11 Diagram Showing Resistance of Valves and Fittings of the Flow of Liquids

Another way to estimate loss in fittings and valves is to use equivalent length.

http://machineryequipmentonline.com/hvac -machinery/pipes-pipe-fittings-and-pipingdetailsvalves/

EQUIVALENT LENGTH – L/D

Fitting	Types	(L/D)eq
00° Elbow Curved Threaded	Standard Radius ($R/D = 1$)	30
90° Elbow Curved, Threaded	Long Radius ($R/D = 1.5$)	16
	Standard Radius ($R/D = 1$)	20
00° Elbow Curved Elanged Wolded	Long Radius ($R/D = 2$)	17
90° Elbow Curved, Flanged/Welded	Long Radius $(R/D = 4)$	14
	Long Radius ($R/D = 6$)	12
	1 weld (90°)	60
90° Elbow Mitered	2 welds (45°)	15
	3 welds (30°)	8
45° Elbow Curved. Threaded	Standard Radius ($R/D = 1$)	16
	Long Radius ($R/D = 1.5$)	
45° Elbow Mitered	1 weld 45°	15
	2 welds 22.5°	6
	threaded, close-return $(R/D = 1)$	50
180° Bend	flanged (R/D = 1)	
	all types (R/D = 1.5)	
	threaded $(r/D = 1)$	60
Teo Through branch as an Elbow	threaded $(r/D = 1.5)$	
Tee Through-branch as an Elbow	flanged $(r/D = 1)$	20
	stub-in branch	

EQUIVALENT LENGTH – L/D

Fitting	Types	(L/D)eq
	45°, full line size, $\beta = 1$	55
Angle valve	90° full line size, β = 1	150
Globe valve	standard, $\beta = 1$	340
	branch flow	90
Plug valve	straight through	18
	three-way (flow through)	30
Gate valve	standard, $\beta = 1$	8
Ball valve	standard, $\beta = 1$	3
Diaphragm	dam type	
Swing check valve	V _{min} = 35 [ρ (lbm/ft^3)] ^{-1/2}	100
Lift check valve	$V_{min} = 40 \ [\rho \ (lbm/ft^3)]^{-1/2}$	600
Hose Coupling	Simple, Full Bore	5

https://neutrium.net/fluid_flow/pressure-loss-from-fittings-equivalent-lengthmethod/ 39

EXAMPLE 4.1 (2)

Pipe flow area: $A = 8.213 \times 10^{-3} \text{ m}^2$

Flowrate:

$$Q = 1,000$$
 LPM $= 0.0167$ m³/s

Velocity:

$$v = \frac{Q}{A} = \frac{(0.0167)}{(8.213 \times 10^{-3})} = 2.029 \quad \text{m/s}$$

$$\operatorname{Re} = \frac{vD}{v} = \frac{(2.029)(102.26 \times 10^{-3})}{(0.862 \times 10^{-6})} = 240,700$$

EXAMPLE 4.1 (3)

$$f = \frac{0.25}{\left[\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{5.74}{\text{Re}^{0.9}}\right)\right]^2} = \frac{0.25}{\left[\log_{10}\left(\frac{0.046/102.26}{3.7} + \frac{5.74}{(240,700)^{0.9}}\right)\right]^2} = .0184$$

$$\xi = \frac{8Lf}{\pi^2 D^5 g} = \frac{8(100)(0.0184)}{\pi^2 (102.26 \times 10^{-3})^5 (9.81)} = 13,605 \qquad (\text{per 100m})$$

$$h_f = \xi Q^2 = (13,605)(0.0167)^2 = 3.78$$
 m/100m

EXAMPLE 4.1 (4)

Loss in 90 degree bend

 $^{a}h = Kv^{2}/2g$, where v is the maximum velocity in nonprismatic fittings. Increase K by 5% for each 25-mm (1-in.) decrement in pipe smaller than 300 mm (12 in.). Expect K values to vary from -20 to +30% or more.

K = 0.25 x 1.4 = 0.35

$$\xi = \frac{8K}{\pi^2 D^4 g} = \frac{8 \cdot (0.35)}{\pi^2 (102.26 \times 10^{-3})^4 \cdot (9.81)} = 264.46$$

 $h_m = \xi Q^2 = 264.46 \cdot (0.0167)^2 = 0.074$ m/piece

EXAMPLE 4.1 (4)

Loss globe valve

K = 4

$$\xi = \frac{8K}{\pi^2 D^4 g} = \frac{8 \cdot (4)}{\pi^2 (102.26 \times 10^{-3})^4 \cdot (9.81)} = 3,022$$
$$h_m = \xi Q^2 = 3,022 \cdot (0.0167)^2 = 0.846 \quad \text{m/valve}$$

Loss check valve

 $K = 2 \rightarrow$ Half of globe value $h_m = 0.423$ m/value

EXAMPLE 4.1 (5)

Components	Size	Quantity	Pressure drop/unit	Pressure drop (m.WG.)
Major loss				
Straight pipe	DN100	150 m	3.78 m/100m	5.67
Minor loss				
Elbows	DN100	8 pcs	0.074 m/pc	0.59
Globe valves	DN100	2 pcs	0.846 m/pc	1.69
Check Valve	DN100	1 pc	0.423 m/pc	0.42
Minor loss				2.71 (48% of 5.67)
Total Pressure drop				<u>8.38</u>

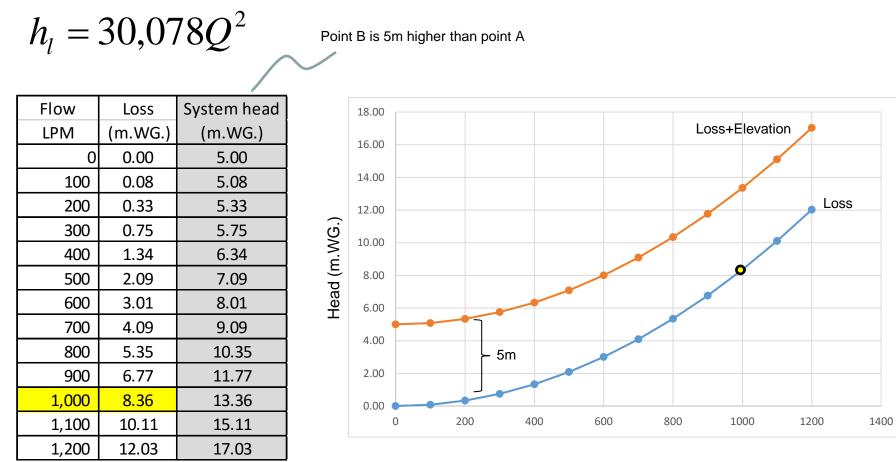
EXAMPLE 4.1 (NOTE)

Loss in pipe (100m)

Loss in 90 degree bend (per elbow)

Loss in globe valve (per valve)

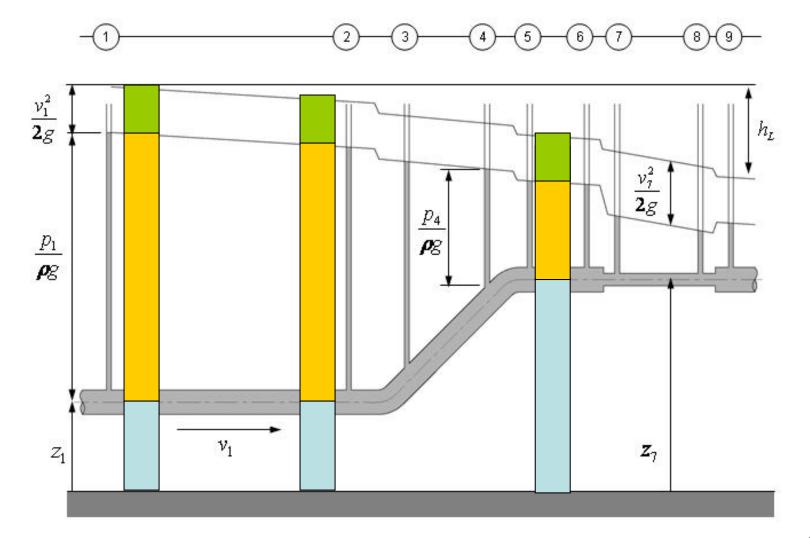
Loss in check valve (per valve)


$$h_f = 13,605Q^2$$

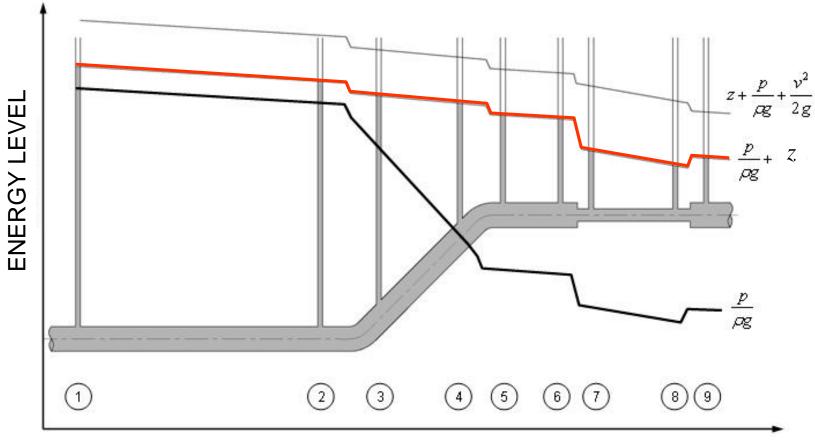
 $h_m = 264.46Q^2$
 $h_m = 3,022Q^2$
 $h_m = 1,511Q^2$

varies with flow rate (but not much)

Loss in the system

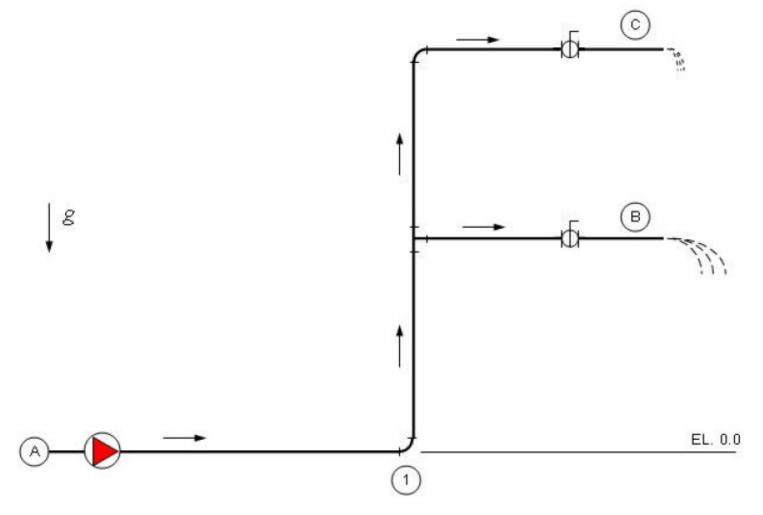

 $h_l = (150/100) \times 13,605 + 8 \times 264.46 + 2 \times 3,022 + 1,511Q^2$ $h_l = 30,078Q^2$

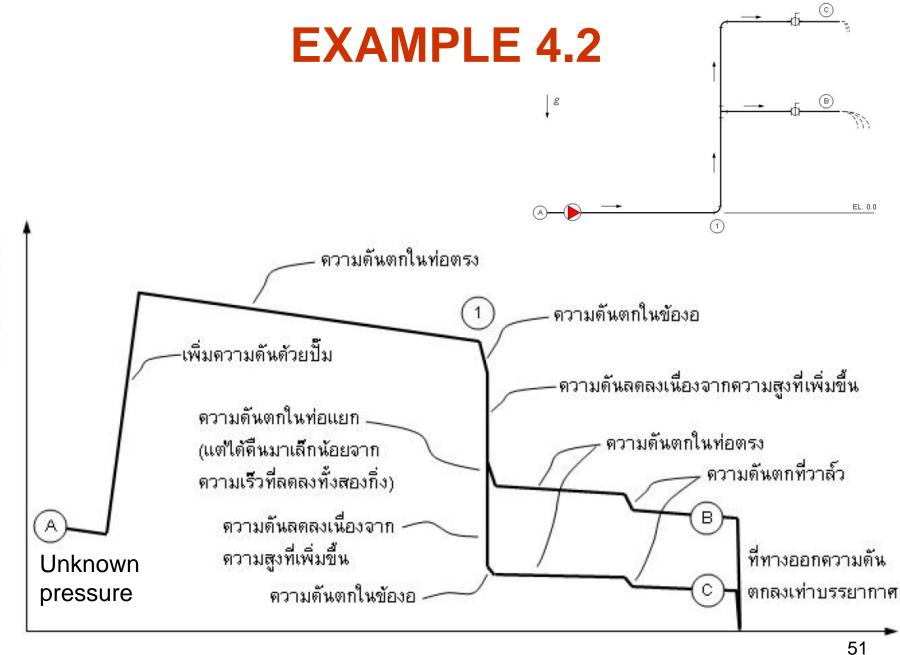
EXAMPLE 4.1 (NOTE)



Flow rate

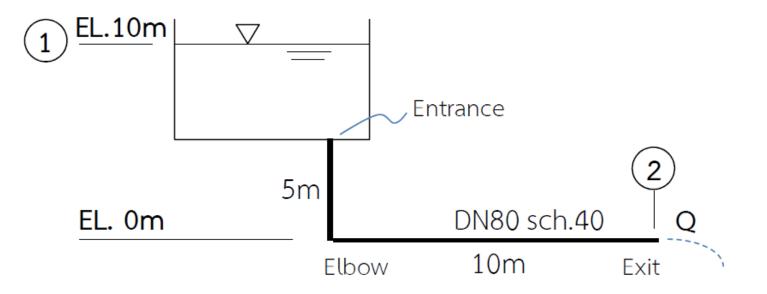
ENERGY GRADE LINE

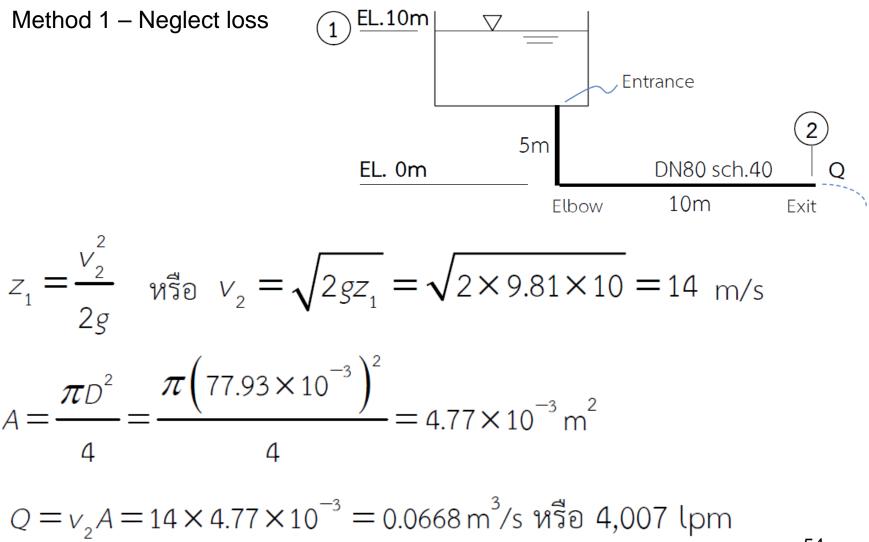


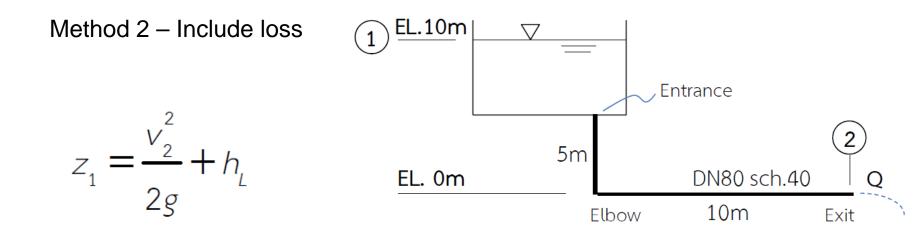

HYDRAULIC GRADE LINE

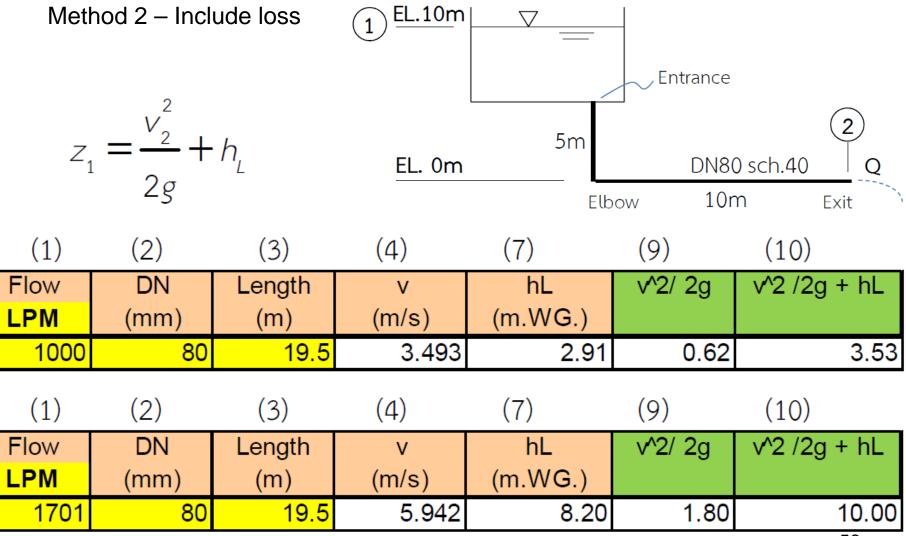
DISTANCE

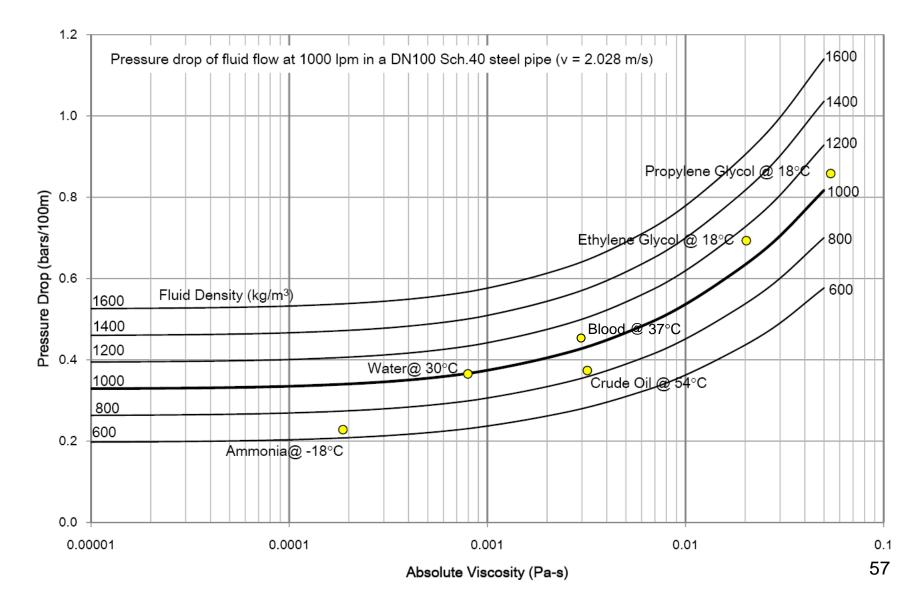
Draw static pressure line from point A to points B and C.



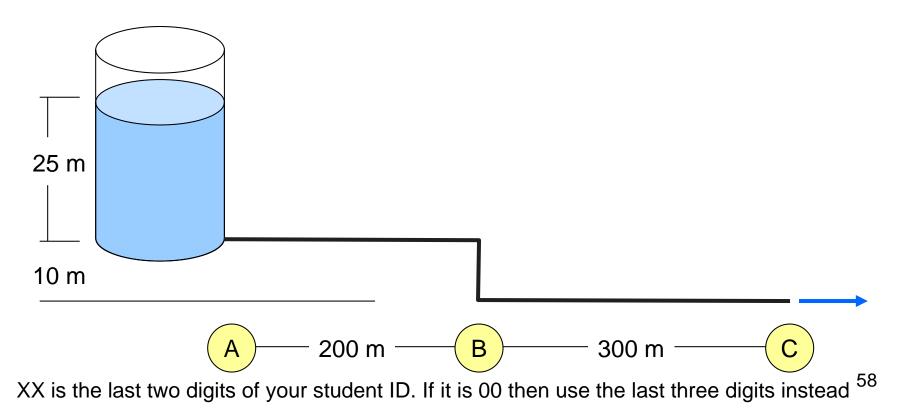

EXCEL SPREADSHEET


al 			R T D		[번명] 199 1	% , .00	+.0 1≓ 1	- -	- <u>🏷</u> - <u>A</u>	* •					
N5		fx C	D	E	F	G	Н		J	К		М	N	0	Р
1		U U	U	L	1	9	11		5	n	L	IVI	IN	0	F
	Darcy W	eisbach E	quation												
,)	Roughne		0.046	mm											
	Density	00,0			(Water at 3	າດ									
3		r viscositv	8.00E-07	m2/s	(Water at 3				Calculation						
3	Flow	DN	Length		P-drop				FLOW	Dia.	Velocity	e/D	Re	f	P-drop
)	LPM	(mm)	(m)	(m/s)	(m/100m)	(m)	(Bars)		(CU.m./s)	(m)	(m/s)	0.0			(m/100m)
1	8	15	100	0.680	5.03	5.03	0.49		0.000	0.016	0.680	0.003	13,426	0.034	5.028
2	20	20	100	0.968	6.72	6.72	0.66		0.000	0.021	0.968	0.002	25,337	0.029	6.724
3	35	25	100	1.046	5.70	5.70	0.56		0.001	0.027	1.046	0.002	34,830	0.027	5.701
4	72	32	100	1.280	6.00	6.00	0.59		0.001	0.035	1.280	0.001	55,265	0.025	5.997
5	114	40	100	1.446	6.11	6.11	0.60		0.002	0.041	1.446	0.001	73,916	0.023	6.109
6	190	50	100	1.462	4.56	4.56	0.45		0.003	0.053	1.462	0.001	95,956	0.022	4.565
7	300	65	100	1.578	4.17	4.17	0.41		0.005	0.064	1.578	0.001	125,268	0.021	4.166
8	570	80	100	1.991	5.04	5.04	0.49		0.010	0.078	1.991	0.001	193,946	0.019	5.041
9	1140	100	100	2.312	4.81	4.81	0.47		0.019	0.102	2.312	0.000	295,591	0.018	
0	2560	150	100	2.288	2.86	2.86	0.28		0.043	0.154	2.288	0.000	440,625	0.017	2.860
1	4650	200	100	2.400	2.25	2.25	0.22		0.078	0.203	2.400	0.000	608,213	0.016	
2	7320	250	100	2.397	1.70	1.70	0.17		0.122	0.255	2.397	0.000	762,612	0.015	1.705
3	10400	300	100	2.399	1.38	1.38	0.14		0.173	0.303	2.399	0.000	909,415	0.014	1.384
4	12500	350	100	2.385	1.22	1.22	0.12		0.208	0.333	2.385	0.000	994,118	0.014	1.221
5	16400	400	100	2.397	1.05	1.05	0.10		0.273	0.381	2.397	0.000	1,141,335	0.014	1.050
6	25800	500	100	2.396	0.80	0.80	0.08		0.430	0.478	2.396	0.000	1,431,525	0.013	0.802
7															
8															
9															
0															
1															
2															
3															
4															


Estimate flowrate Q



(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Flow	DN	Length	Velocity	P-drop/	′ 100m	P-dro	op Total
LPM	(mm)	(m)	(m/s)	(m.WG./100r	(Bars/100m) (m.Fluid)	(Bars)
1000	80	19.5	3.493	14.85	1.4570219	2.90	0.28
(1)	(2)	(3)	(4)	(7)	(9)	(1	0)
Flow	DN	Length	V	hL	v^2/	2g v^2	/2g + hL
LPM	(mm)	(m)	(m/s)	(m.WC	G.)		
100	0 8	0 <mark>19.</mark>	<mark>5</mark> 3.4	93	2.91	0.62	₅ ვ.53


56

EFFECT OF VISCOSITY AND DENSITY

HOMEWORK 4

- DETERMINE THE SUITABLE DIAMETER OF A SMOOTH PIPE TO TRANFER XX0 LPM OF WATER FROM POINT A TO POINT C. THE MINIMUM PRESSURE REQUIRED AT C IS 1 BARg.
- 2. ASSUME THAT THE FLOW RATE OF XX0 LPM IS ACHIEVED IN THIS SYSTEM, ESTIMATE THE VELOCITY HEAD IN PERCENTAGE OF THE TOTAL HEAD?
- 3. SKETCH ENERGY LINE, HYDRAULIC GRADE LINE AND STATIC PRESSURE LINE.

