ME444 ENGINEERING PIPING SYSTEM DESIGN

CHAPTER 2 : PIPING MATERIALS

LAST SESSION

- 1. INTRODUCTION
- 2. STANDARDS
- 3. BASIC UNITS
- 4. BASIC FLOW IN PIPE
- 5. QUICK LOOK AT PIPE DRAWINGS

CONTENTS

- 1. PIPES
- 2. VALVES
- 3. ACCESSORIES
- 4. PUMPS

CONSIDERATION

Properties of the fluid

- ° Corrosive or scale-forming properties
- ° Unusual characteristics, for example, viscosity or sludges

Service conditions

- ° Pressure (including surges and transients)
- ° Corrosive environment for exposed piping or buried piping
- ° Soil loads, bearing capacity and settlement, external load

PIPE SELECTION:

- MATERIAL
- SIZE
- THICKNESS

PIPE SIZES

NPS = NOMINAL PIPE SIZE (INCHES) DN = DIAMETER NOMINAL (mm.)

NPS	DN	NPS	DN	NPS	DN	NPS	DN
1/8	6	31/2	90	22	550	44	1100
1/4	8	4	100	24	600	48	1200
3/4	10	5	125	26	650	52	1300
1/2	15	6	150	28	700	56	1400
3⁄4	20	8	200	30	750	60	1500
1	25	10	250	32	800	64	1600
11/4	32	12	300	34	850	68	1700
$1\frac{1}{2}$	40	14	350	36	900	72	1800
2	50	16	400	38	950	76	1900
21/2	65	18	450	40	1000	80	2000
3	80	20	500	42	1050		_

STANDARD SIZES

Nominal pipe size (NPS), in IP	ASHRAE std. wt. size, mm	AWWA pipe size, mm	NFPA pipe size, mm	ASTM copper tube size, mm	Nominal pipe size DN
1⁄8	_			6	6
3/16	_		_	8	8
1/4	8		_	10	10
3/8	10		_	12	12
³ / ₈ 1/ ₂ 5/ ₈ 3/ ₄	15	12.7 & 13	12	15	15
5/8	_		_	18	18
3/4	20			22	20
1	25	25	25 & 25.4	28	25
11/4	32		33	35	32
11/2	40	45	38 & 38.1	42	40
2	50	50 & 50.8	51	54	50
21/2	65	63 & 63.5	63.5 & 64	67	65
3	80	75	76 & 80	79	80
31/2	—		89	_	90
4	100	100	102	105	100
4 ¹ / ₂	_	114.3			115
5	_	<u></u>	127	130	125
6	150	150	152	156	150
8	200	200	203	206	200
10	250	250	_	257	250
12	300	300	305	308	300
14	_	350			350

STANDARD SIZES (CONT'D)

Nominal pipe size (NPS), in IP	ASHRAE std. wt. size, mm	AWWA pipe size, mm	NFPA pipe size, mm	ASTM copper tube size, mm	Nominal pipe size DN
1/8	_	_	_	6	6
¹ / ₈ ³ / ₁₆	_		_	8	8
1/4	8	_	_	10	10
3/8	10		_	12	12
1/2	15	12.7 & 13	12	15	15
1/2 5/8 3/4	_	_	_	18	18
3/4	20	_	_	22	20
1	25	25	25 & 25.4	28	25
11/4	32	_	33	35	32
11/2	40	45	38 & 38.1	42	40
2	50	50 & 50.8	51	54	50

STEEL PIPE THICKNESS

A schedule number indicates the approximate value of the expression

1000 *P/*S

,where *P* is the service pressure and *S* is the allowable stress.

Higher schedule number means the thicker pipe.

[SEE TABLE E2.1 IN PIPING HANDBOOK]

STEEL PIPE TABLE

DN	Sche	dule	do	t	d_i	m _{pipe}	m _{water}	1	Z
(mm)			(mm)	(mm)	(mm)	(kg/m)	(kg/m)	(cm ⁴)	(cm ³)
20		5S	26.67	1.651	23.368	1.016	0.429	1.02	0.765
		10S	26.67	2.108	22.454	1.273	0.396	1.236	0.927
	Std	40	26.67	2.87	20.93	1.68	0.344	1.541	1.156
	XS	80	26.67	3.912	18.846	2.19	0.279	1.864	1.398
		160	26.67	5.537	15.596	2.878	0.191	2.193	1.645
	XXS		26.67	7.823	11.024	3.626	0.095	2.411	1.808
25		5S	33.401	1.651	30.099	1.289	0.712	2.081	1.246
		10S	33.401	2.769	27.863	2.086	0.61	3.151	1.887
	Std	40	33.401	3.378	26.645	2.494	0.558	3.635	2.177
	XS	80	33.401	4.547	24.307	3.227	0.464	4.396	2.632
		160	33.401	6.35	20.701	4.225	0.337	5.208	3.119
	XXS	—	33.401	9.093	15.215	5.436	0.182	5.846	3.501

[SEE APPENDIX ป.8]

STANDARD DIMENSION RATIO


SDR = Outside diameter / Thickness

SDR is used mostly in plastic pipes .

For comparison; a DN100 sch.40 steel pipe \rightarrow SDR = 114.3/6.02 = 19

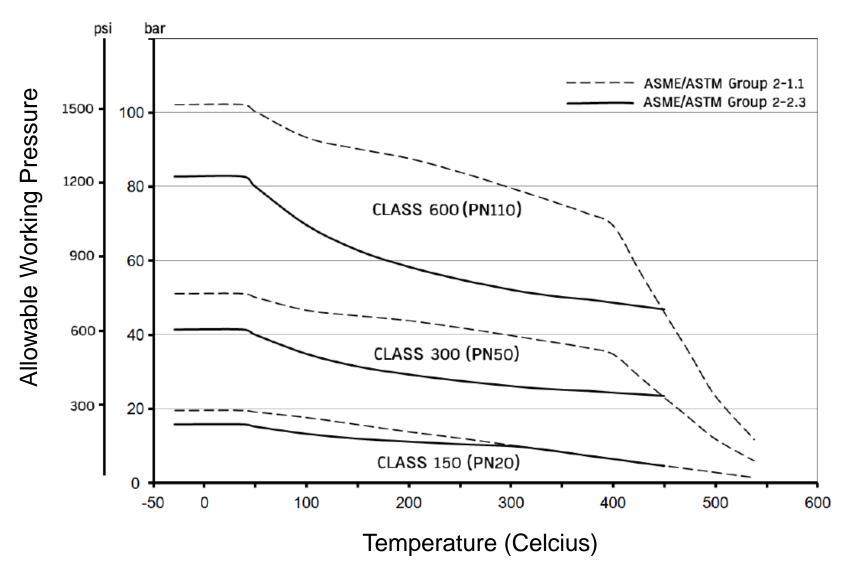
Examples

1/8"-24" Schedule 40/80 1/2"-8" Schedule 120 3/4"-8" SDR 21 1"-24" SDR 26 18"-24" SDR 41

PRESSURE RATING

Class	150	300	400	600	900	1500	2500
PN	20	50	68	110	150	260	420

Notes:


1. Pressure-temperature ratings of different classes vary with the temperature and the material of construction.

2 For pressure-temperature ratings, refer to tables in ASME B16.5, or ASME B16.34.

Class – PSIG PN – BARS

Actual allowable working pressures depend on MATERIAL and TEMPERATURE

PRESSURE RATING

PIPE MATERIALS

Materials	Density	Yield Strength	Ultimate Strength	Elastic Modulus	Coefficient of Thermal	Thermal Conductivity	Specific Heat	Melting Point		
	(kg/m³)	(MPa)	(MPa)	(GPa)	Expansion (10 ⁻⁶ K ⁻¹)	(W/m.K)	(J/kg.K)	(°C)		
Metal										
Aluminum	2,800	72	97	72	22.5	192	910	660		
Copper	8,940	69	220	110	16.5	398	385	1,082		
Brass	8,530	75	303	110	20	110	337	905		
Titanium	4,510	240	330	107	9	17	720	1,668		
Stainless Steel	8,000	193	552	207	16	16	490	1,510		
Med. Carb. Steel	7,850	350	520	207	11.3	52	490	1,425		
Plastic	Plastic									
ABS	1,080	40	55	2.5	95	0.26	1,400	105		
PVC	1,400	41	47	3.4	100	0.18	2,400	80		
HDPE	950	27	30	3	225	0.42	2,000	130		

Notes: All values are approximated. Some thermal properties vary with temperature.

CARBON STEEL PIPES

TYPES: SEAM/SEAMLESS BLACK/GALVANIZED

JOINTS: THREADED WELDED FLANGED

APPLICATIONS: GENERAL PRESSURE PIPING

Usually come in 6-meter length.

CARBON STEEL PIPES ASTM A53A

Min yield strength 205 MPa Min tensile strength 330 MPa

CARBON STEEL PIPES TIS276-2562 **GALVANZED STEEL PIPE TIS277-2532**

ความต้านแรงดึงและความยึด ท่อเหล็กต้องมีความต้านแรงดึงไม่น้อยกว่า 320 เมกะพาสคัล และมีความยืดไม่น้อยกว่าร้อยละ 20 การทดสอบให้ปฏิบัติตามมาตรฐานผลิตภัณฑ์อุตสาหกรรม การทดสอบเหล็กและเหล็กกล้า เล่ม 6 การทดสอบ ท่อเหล็กกล้าโดยการดึง มาตรฐานเลขที่ มอก.244 เล่ม 6

ประเภท ให้แสดงด้วยแถบสีกว้างประมาณ 50 มิลลิเมตร ดังนี้ ประเภท 1 สีน้ำตาล ประเภท 2 สีน้ำเงิน ประเภท 3 สีแดง ประเภท 4 สีเขียว

ท่อเหล็กแบบมีตะเข็บ ผนังท่อบาง ท่อเหล็กแบบมีตะเข็บและแบบไม่มีตะเข็บ ผนังท่อหนาปานกลาง ท่อเหล็กแบบมีตะเข็บและแบบไม่มีตะเข็บ ผนังท่อหนา

ท่อเหล็กแบบมีตะเข็บและแบบไม่มีตะเข็บ ผนังท่อหนาพิเศษ

25

ňϕŢĽťńΘŚĐŤ

STRUCTURAL STEEL PIPES TIS107-2561

มอก. 107–2561

JIS G3444

ตารางที่ 4 ความต้านแรงดึง ความเค้นคราก การดัดโค้ง และการกดแบน สำหรับท่อแบบกลม

(ข้อ 5.3.1.1 ข้อ 5.3.1.2 และข้อ 5.3.1.3)

		เกณฑ์ที่กำหนด ชั้นคุณภาพ						
รายการที่	สมบัติทางกล							
		STK290	STK400	STK490	STK500	STK540		
1	ความต้านแรงดึง (เมกะพาสศัล)							
	ไม่น้อยกว่า	290	400	490	500	540		
2	ความเค้นคราก (เมกะพาสคัล)	-						
	ไม่น้อยกว่า	-	235	315	355	390		
3	การดัดโค้ง (เฉพาะขนาดเส้นผ่าน							
	ศูนย์กลางภายนอกไม่เกิน 50 mm)							
	มุ่มของการดัดโค้ง (องศา)	90	90	90	90	90		
	รัศมีภายในของการดัดโค้ง (มิลลิเมตร)	6D	6D	6D	6D	6D		
4	การกดแบน (เฉพาะขนาดเส้นผ่าน							
	ศูนย์กลางภายนอกมากกว่า 50 mm)							
	ระยะห่างแผ่นกด (H) (มิลลิเมตร)	(2/3) D	(2/3) D	(7/8) D	(7/8) D	(7/8) [

STAINLESS STEEL PIPES

Stainless steel pipes have Cr, Ni and Mo content.

- 1. Ferric type: resist corrosion, magnitic response, cannot be harden: ASTM 430
- 2. Austenitic: corroded under chloride, non-magnetic response: ASTM 304 Most popular, ASTM 316, general purpose: food-drug, chemical, etc.
 3. Superaustenitic: high corrosion resistance
 4. Martensitic: high temperature applications, magnitic response: ASTM 410
- 5. Duplex (1+2)

CAST IRON PIPES

TYPES: CAST IRON/DUCTILE CAST IRON PLAIN/COATED

JOINTS: CAULKED

APPLICATIONS SOIL, WASTE, DRAIN

COPPER PIPES

TYPES: HARD (ANNEALED) / SOFT (DRAWN) THICKNESS: K (THICK), L, M (THIN)

JOINTS: SOLDERED FLARED FLANGED

APPLICATIONS: COMPRESSED GAS, MEDICAL GAS

Copper pipes don't like ammonia

OTHER METAL PIPES

ALUMINUM – Light weight, low thermal inertia

BRASS (Cu+Zn) – General sanitary pipe, valves.

LEAD – Radioactive waste

PLASTIC PIPES

ADVANTAGES

1. Resistance to a very wide range of sanitary and chemical effluents

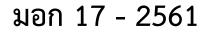
- 2. Resistance to aggressive soils
- 3. Availability in long lengths
- 4. Light weight
- 5. Low resistance to fluid flow
- 6. Generally low initial cost

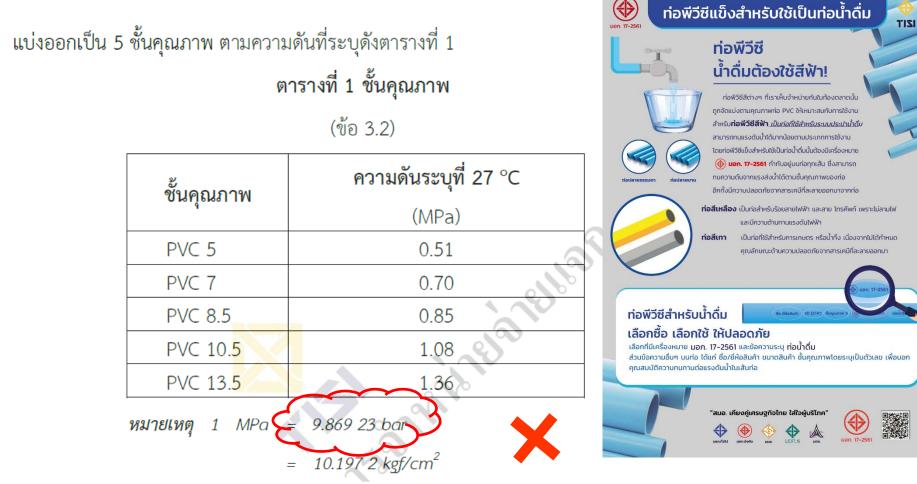
DISADVANTAGES

- 1. Poor structural stability requiring additional support
- **2.** Susceptibility of some types of plastics to physical changes resulting from exposure
- to sunlight
- 3. Generally low resistance to solvents
- 4. Poor fire resistance

MAJOR TYPES

PVC, CPVC PP, PP-R PE, HDPE, PB

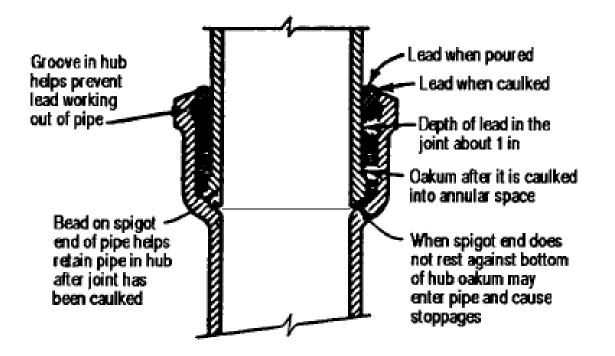



Standard : SCH 80, JIS

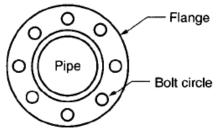
PVC PIPES

Usually come in 4-meter length.

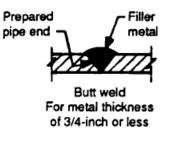
OTHER PIPE MATERIALS


CONCRETE NON-REINFORCE/REINFORCE CLASS I TO 5 GENERAL WASTE AND DRAIN

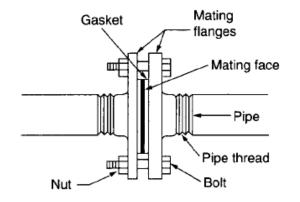
GLASS FOR CORROSIVE LIQUIDS i.e. ACIDS.

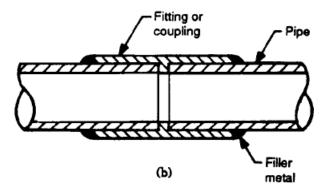


JOINTS

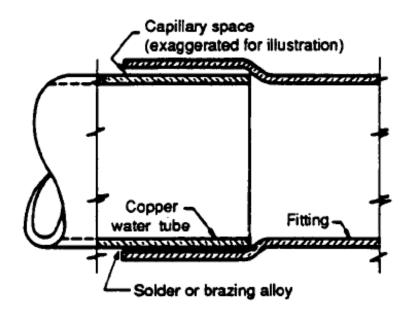


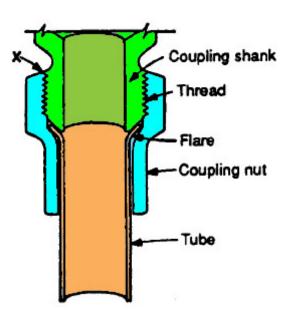
CAULKED JOINT FOR CAST IRON PIPES


JOINTS FOR STEEL PIPES

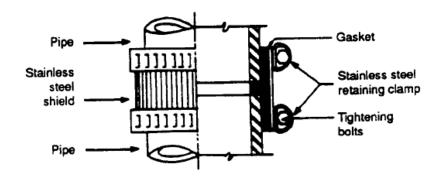


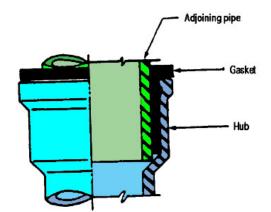
(a)


FLANGED

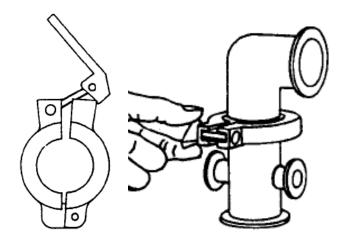

WELDED

JOINTS FOR COPPER TUBES

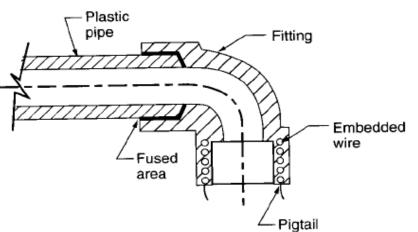


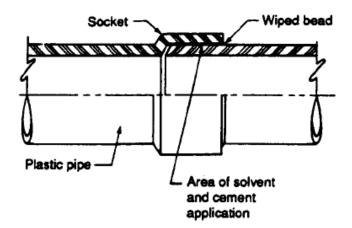


SOLDERED OR BRAZED

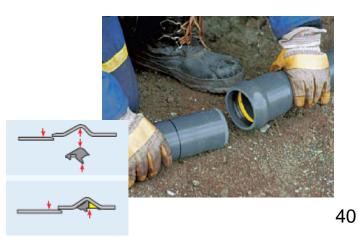

FLARED

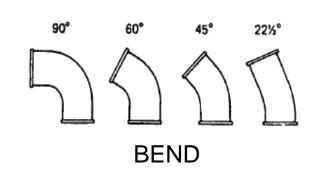
OTHER TYPES

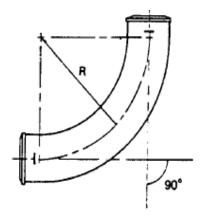


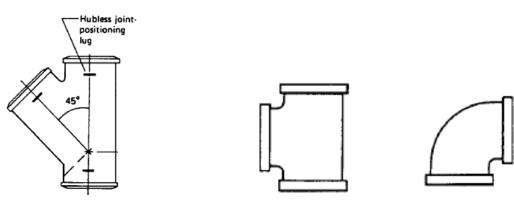


JOINTS FOR PLASTIC PIPES




HEAT-FUSED JOINT



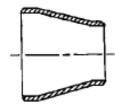

SOLVENT CEMENT JOINT

FITTINGS

WYE

TEE

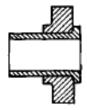
FITTINGS (FOR WELDING)


Welding neck flange

Cap

Eccentric reducer

Reducing outlet tee



Concentric reducer

Reducing elbow,

long radius

Straight tee

Lap joint flange

VIIIIIIIIIIIIIIIIII

Blind flange

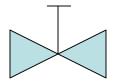
THE OWNER OF

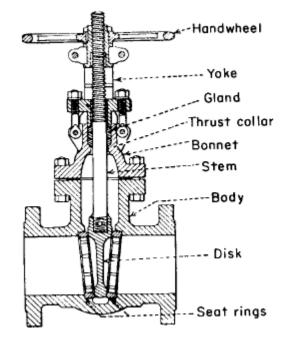
180° return

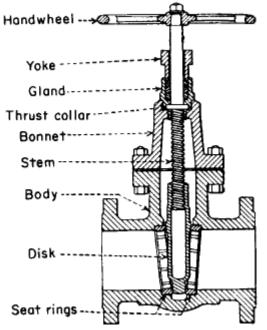
45° elbow

90° long radius elbow

90° short radius elbow



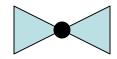




GATE VALVES

Advantages

- 1. Good shutoff characteristics.
- 2. Bidirectional.
- 3. LOW pressure loss

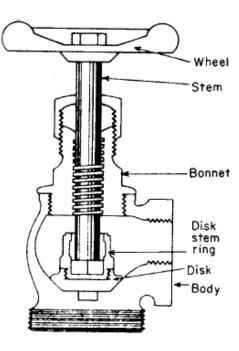

Disadvantages

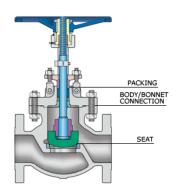
- 1. Not quick opening or closing valves.
- 2. Require large space
- 3. High-fluid velocities when near-fully-closed

GATE VALVES

GLOBE VALVES

Advantages


- 1. Good shutoff capability
- 2. Good throttling capability
- 3. Shorter stroke
- 4. Available in tee, wye, and angle patterns,
- 5. Easy to resurface the seats


Disadvantages

- 1. Higher pressure drop
- 2. Requires greater force or a larger actuator to seat the valve (with pressure under the seat)

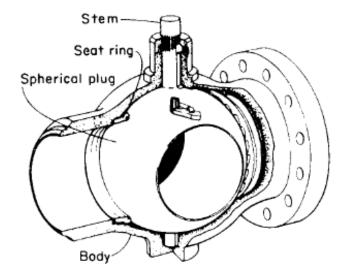
Applications

Flow regulation

GLOBE VALVES

BALL VALVES

Advantages


- 1. Provides bubble-tight service.
- 2. Quick to open and close.
- 3. Smaller in size than a gate valve.
- 4. Multiport design offers versatility
- 5. Required less actuated force

Disadvantages

- 1. Not suitable for sustained throttling applications
- 2. Suspended particles can settle causing failure.
- 3. Small size

Applications

- 1. Air, gaseous, and liquid applications requiring bubble-tight service
- 2. Low-point drains and high-point vents
- 3. Instrument root valves
- 4. Cooling water and feedwater systems
- 5. Steam service

BALL VALVES

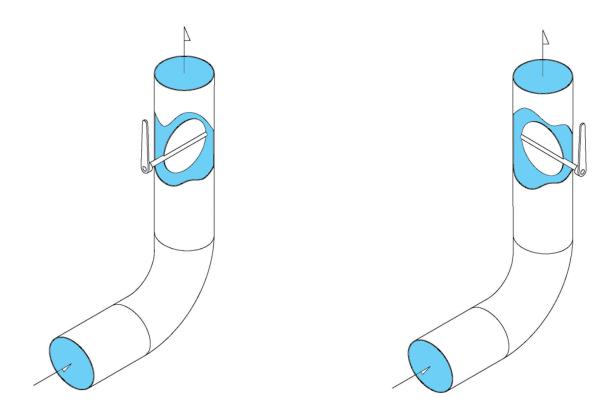
BUTTERFLY VALVES

- 1. Compact and light weight.
- 2. Quick acting (quarter-turn)
- 3. Available in large sizes: NPS 11_2 (DN 40) to over NPS 200(DN 5000).
- 4. Low-pressure drop

Disadvantages

- 1. Limited throttling (low differential pressure)
- 2. Must avoid turbulent:
 - Locate 4 to 6D downstream from turbulent source
 - Orient valve stem carefully...How?

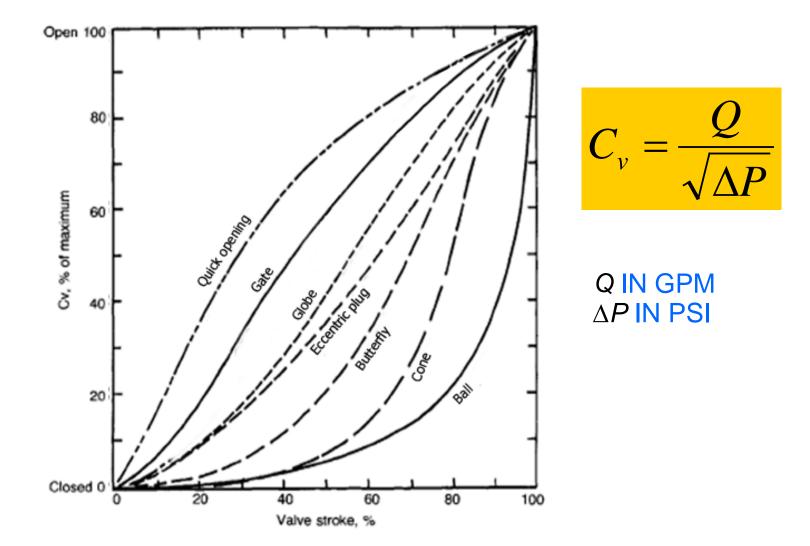
BUTTERFLY VALVES

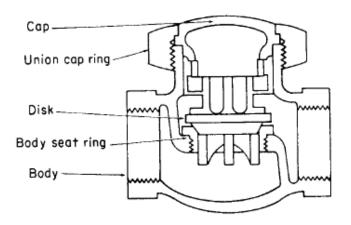


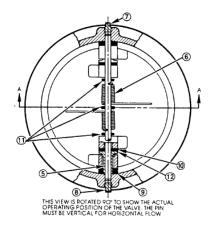
ORIENTATION OF VALVE STEM

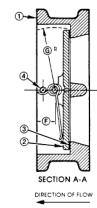
CORRECT

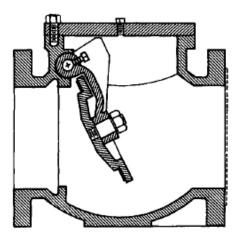
INCORRECT

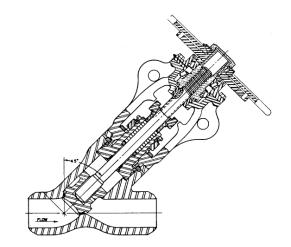

VALVE ACTUATORS



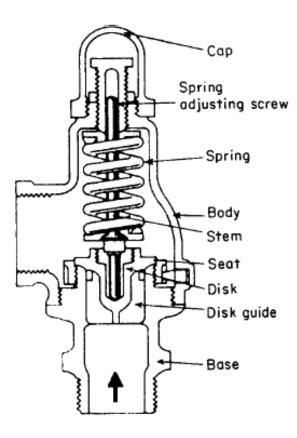

- Pneumatic
- Electric

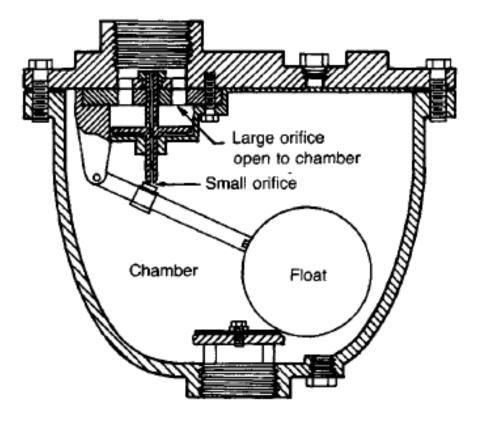

VALVE PRESSURE DROP





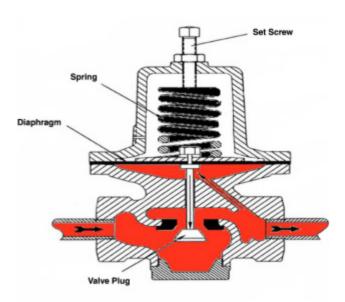
CHECK VALVES





RELEIF VALVES

AIR RELEASE VALVES



PRESSURE REDUCING VALVES

PRV, pressure regulator, pressure regulating valve, pressure control valve

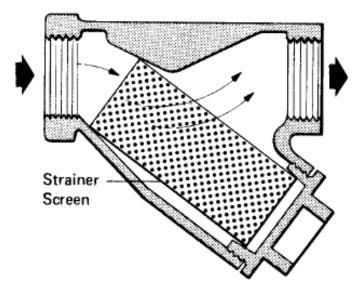
Direct acting

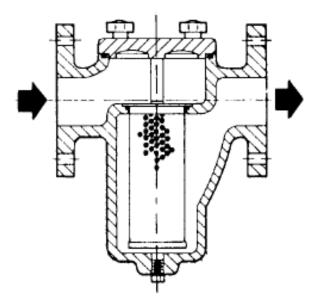
PRESSURE REDUCING VALVES

PRV, pressure regulator, pressure regulating valve

Pilot operated

OTHER VALVES


DIAPHRAGM VALVES PLUG VALVES NEEDLE VALVES


3. ACCESSORIES

Water hammer arresters Strainer Pressure guages Flow meters PIPE HANGERS Etc.

STRAINERS

WYE STRAINER

BUCKET STRAINER

Y - STRAINERS

PRESSURE GUAGE

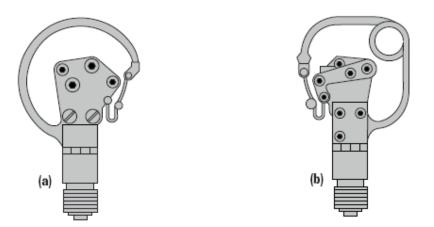
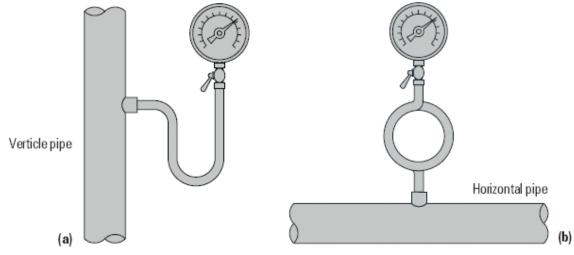
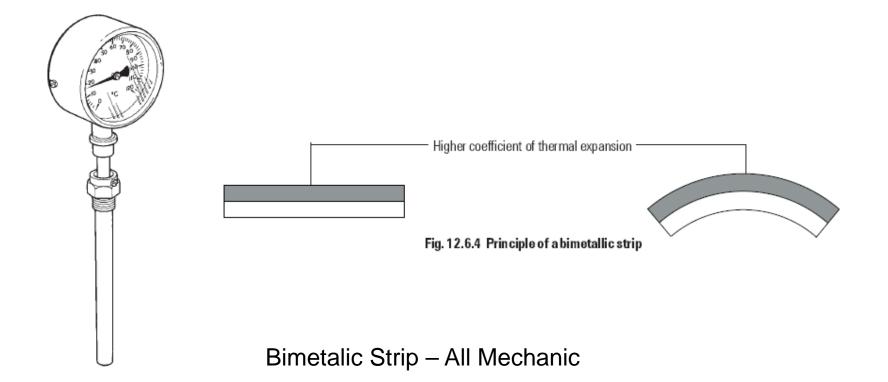
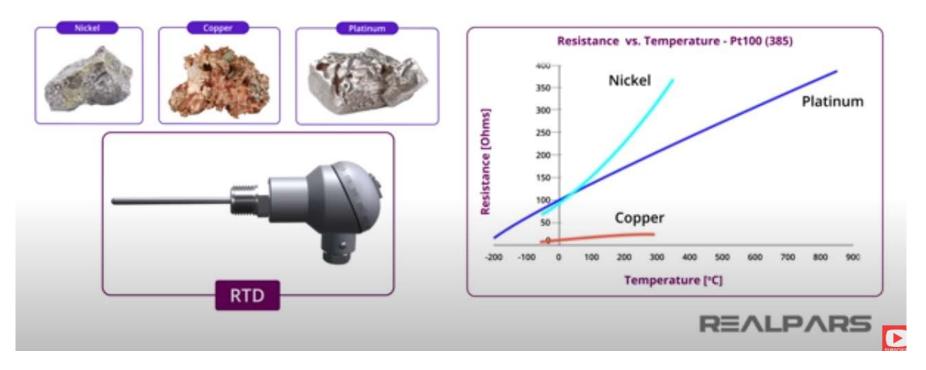


Fig. 12.6.1 'C'-shaped (a) and coiled (b) Bourdon tubes



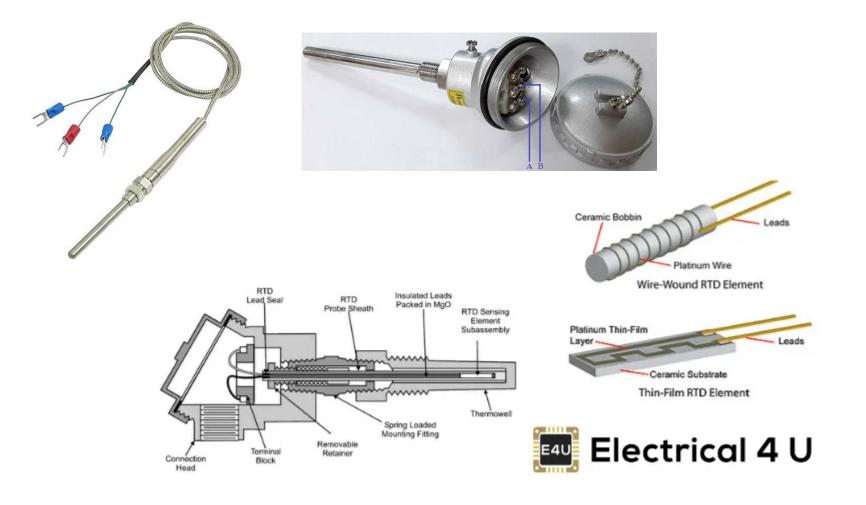

Fig. 12.6.2 'U' (a) and ring type (b) syphon tubes

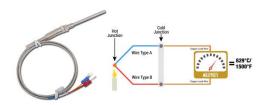
PRESSURE GUAGE (digital)


- Resistive
- Capacitive
- Piezoelectric
- Optical
- MEMS

TEMPERATURE GUAGE

TEMPERATURE GUAGE (digital)


RTD (Resistant temperature detector) – Platinum Resistance Thermometer – PT100


https://www.youtube.com/watch?v=3qDL_ipZxLg

TEMPERATURE GUAGE (digital)

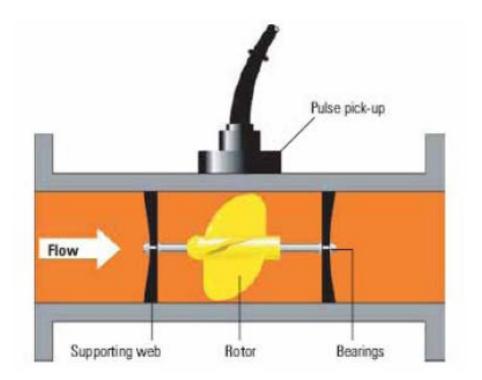
RTD (Resistant temperature detector) – Platinum Resistance Thermometer – PT100

TEMPERATURE GUAGE (digital)

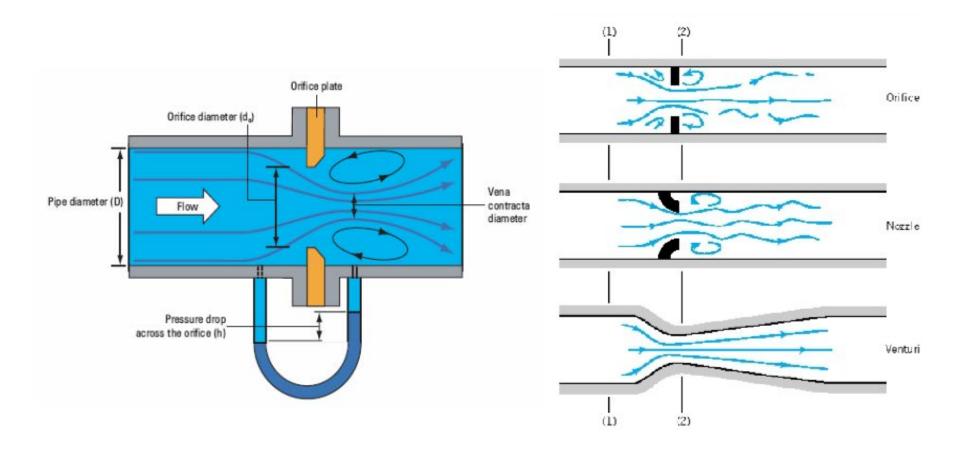
ANSI Code	ANSI MC 96.1 Color Coding		Alloy Combination		Maximum T/C Grande temp.	EMF(mv)Over	IEC 584-3	IEC Code
	Thermocouple	Extension	+ Lead	- Lead	range	Max.temp.range	Color Coding	LC CODE
к			NICKEL- CHROMIUM Ni-Cr	NICKEL- ALUMINUM Ni-Al	-270 to 1372 °C -454 to 2501 °F	-6.458 to 54.886	and the second s	к
J		(je	IRON Fe (magnetic)	CONTANTAN COOPER- NICKEL Cu-Ni	-210 to 1200 °C -346 to 2193 °F	-8.095 to 69.553	G.	J
			COPPER Cu	CONTANTAN COOPER- NICKEL Cu-Ni	-270 to 400°C -454 to 752°F	-8.258 to 20.872	Can-	T
Е		(etc)	NICKEL- CHROMIUM Ni-Cr	CONTANTAN COOPER- NICKEL Cu-Ni	-270 to 1000 °C -454 to 1832 °F	-9.835 to 76.373	Contraction of the second	Е
Ν			NICROSIL Ni-Cr-Si	NISIL Ni-Si-Mg	-270 to 1300°C -450 to 2372°F	-4.345 to 47.513	Geo-	N
s	NONE ESTABLISHED		PLATINUM- 10% RHODIUM Pt-10%Rh	PLATINUM Pt	-50 to 1768 °C -58 to 3214 F	-0.236 to 18.693	CB:	s
R	NONE ESTABLISHED	(Jei	PLATINUM- 13% RHODIUM Pt-13%Rh	PLATINUM Pt	-50 to 1768°C -58 to 3214°F	-0.228 to 21.101	Contraction of the second	R
В	NONE ESTABLISHED		PLATINUM- 30% RHODIUM Pt-30%Rh	PLATINUM-6% RHODIUM Pt-8%Rh	0 to 1820 °C 32 to 3308'F	0 to 13.820	Ces:	в

Thermocouple (voltage changes with temperature)

FLUID FLOW METER



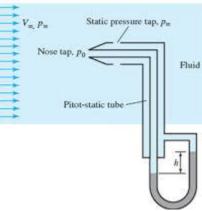
Propeller/turbine Differential head-Pitot tube Deflection Variable area (rotameter) Magnetic Ultrasonic Etc.



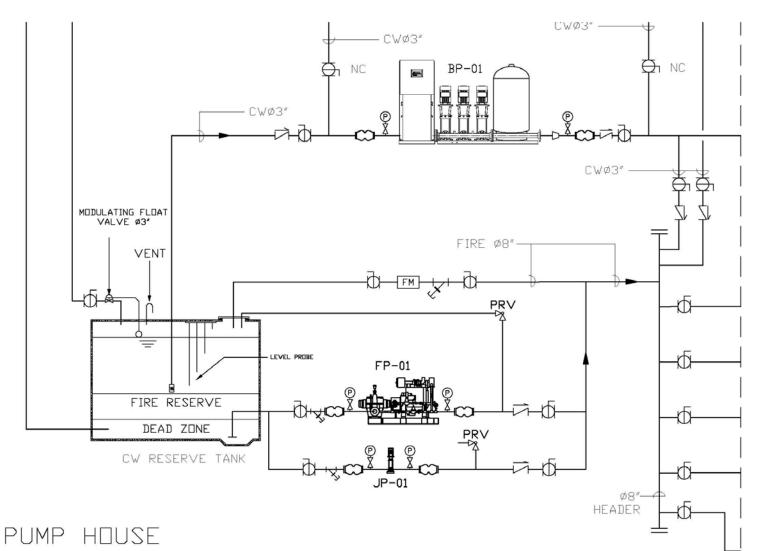
Rotameter

TURBINE FLOW METER

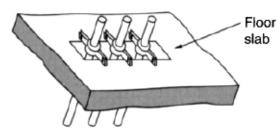
DIFFERENT PRESSURE FLOW METER



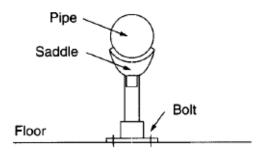
FLOW MEASUREMENT TECHNOLOGY


- Pitot tube
- Hot wire
- Ultrasonic
- Coriolis

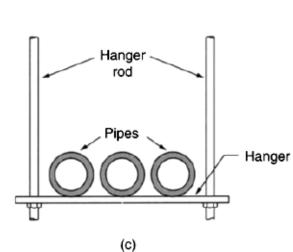
. . .

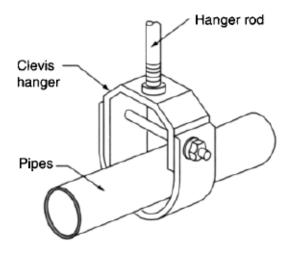


WATER TANK ACCESSORY


75

PIPE HANGERS & SUPPORTS





(a)

(b)

PIPE HANGERS SPACING

ASME B31.1

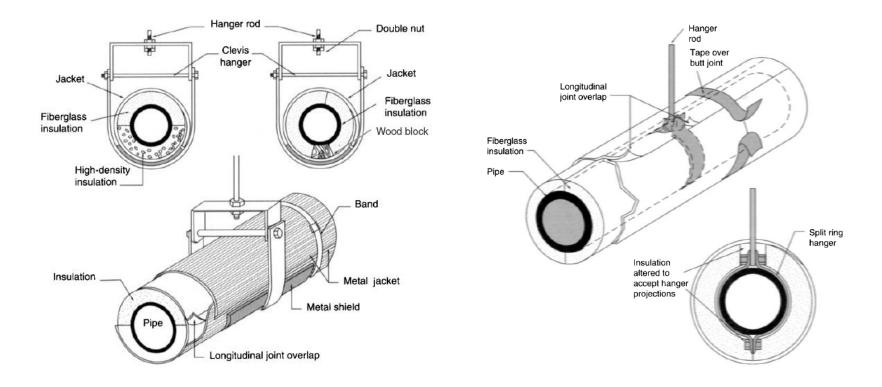
ASHRAE

		Suggested Maximum Span				
Nominal Pipe Size,	Diameter Nominal, DN	Wa	ater vice	Steam, Gas, or Air Service		
NPS		ft	m	ft	m	
1	25	7	2.1	9	2.7	
2	50	10	3.0	13	4.0	
3	80	12	3.7	15	4.6	
4	100	14	4.3	17	5.2	
6	150	17	5.2	21	6.4	
8	200	19	5.8	24	7.3	
12	300	23	7.0	30	9.1	
16	400	27	8.2	35	10.7	
20	500	30	9.1	39	11.9	
24	600	32	9.8	42	12.8	

Table 121.5 Suggested Steel Pipe Support Spacing

GENERAL NOTES:

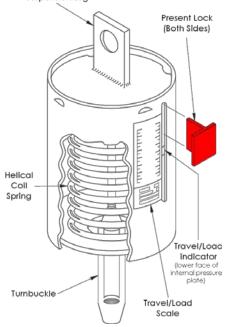
- (a) Suggested maximum spacing between pipe supports for horizontal straight runs of standard and heavier steel pipe at maximum operating temperature of 750°F (400°C).
- (b) Does not apply where span calculations are made or where there are concentrated loads between supports, such as flanges, valves, specialties, etc.
- (c) The spacing is based on a fixed beam support with a bending stress not exceeding 2,300 psi (15.86 MPa) and insulated pipe filled with water or the equivalent weight of steel pipe for steam, gas, or air service, and the pitch of the line is such that a sag of 0.1 in. (2.5 mm) between supports is permissible.

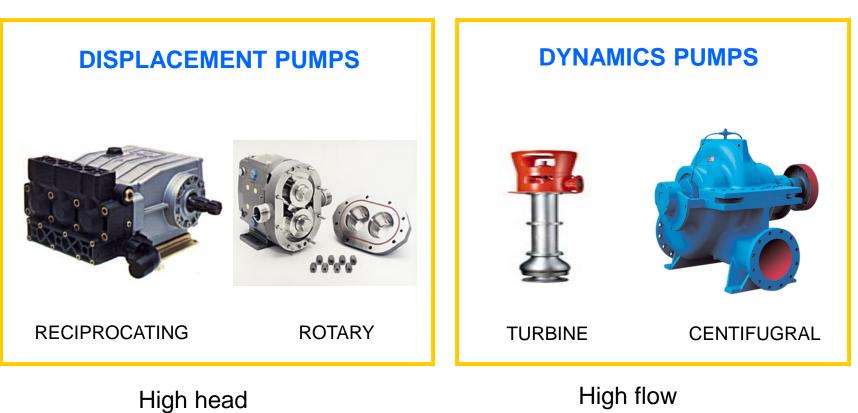

Table 6	Suggested Hanger Spacing and Rod Size for
	Straight Horizontal Runs

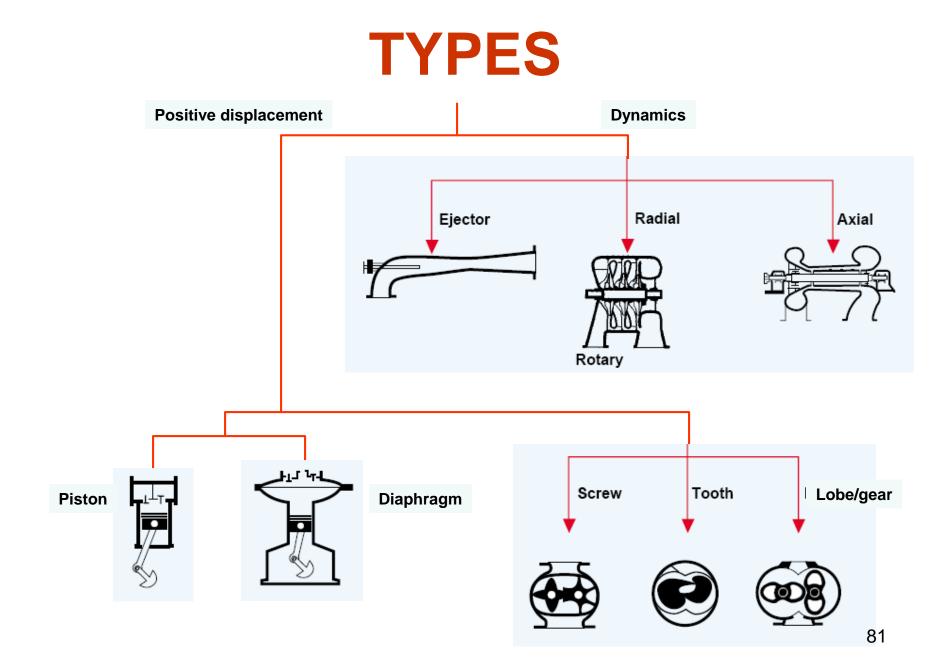
Nominal	Н				
Nominal - O.D.,	Standard Steel Pipe ^a		Copper Tube	Rod Size,	
mm	Water	Steam	Water	mm	
15	2.1	2.4	1.5	6.4	
20	2.1	2.7	1.5	6.4	
25	2.1	2.7	1.8	6.4	
40	2.7	3.7	2.4	10	
50	3.0	4.0	2.4	10	
65	3.4	4.3	2.7	10	
80	3.7	4.6	3.0	10	
100	4.3	5.2	3.7	13	
150	5.2	6.4	4.3	13	
200	5.8	7.3	4.9	16	
250	6.1	7.9	5.5	19	
300	7.0	9.1	5.8	22	
350	7.6	9.8		25	
400	8.2	10.7		25	
450	8.5	11.3		32	
500	9.1	11.9		32	

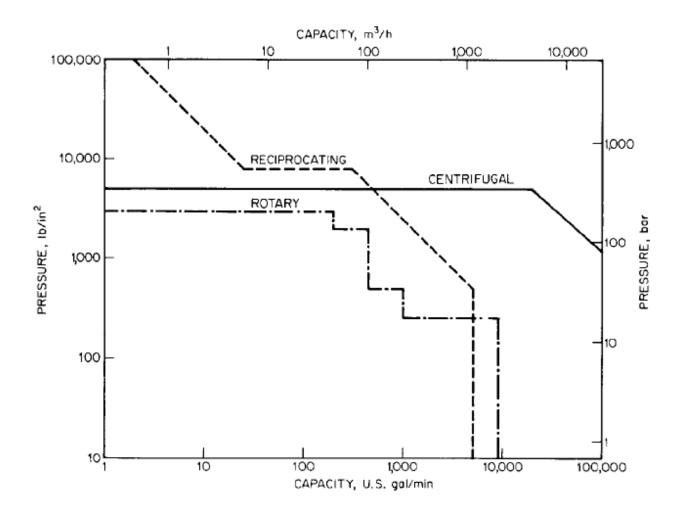
Source: Adapted from MSS Standard SP-69

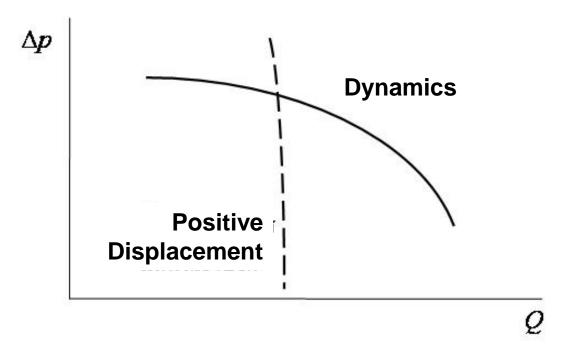

^a Spacing does not apply where span calculations are made or where concentrated loads are placed between supports such as flanges, valves, specialties, etc.


HANGING INSULATED PIPES

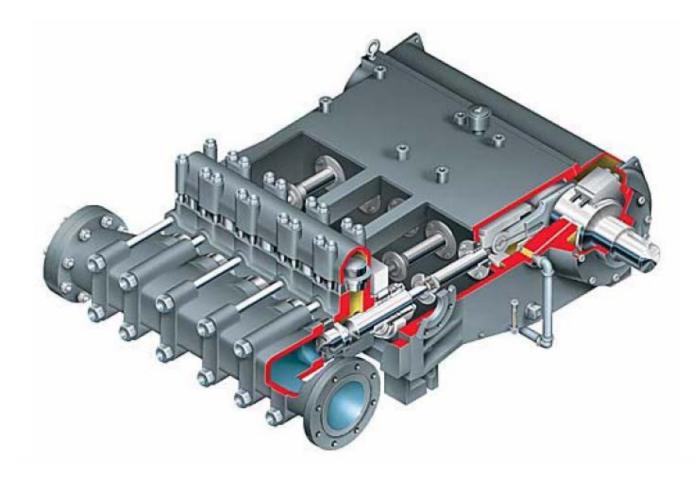

SPRING HANGERS



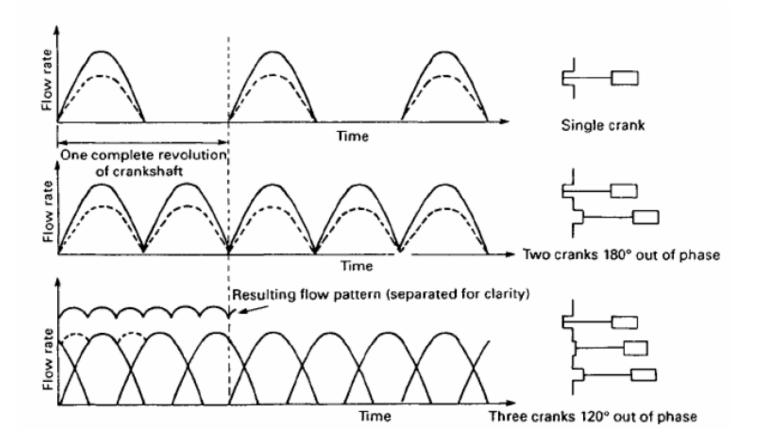




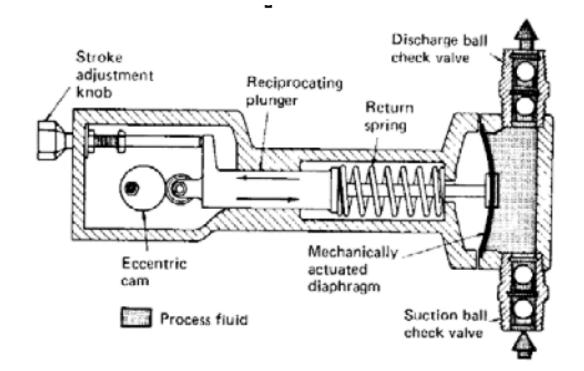
RANGE



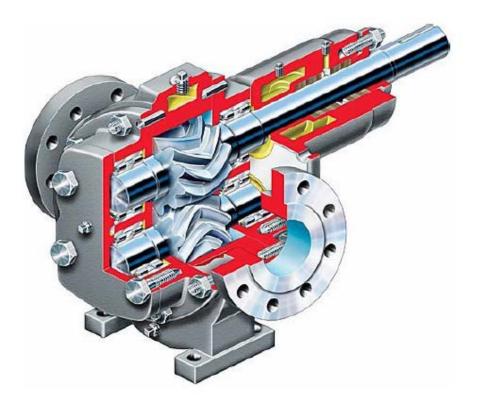
82


CHARACTERISTICS

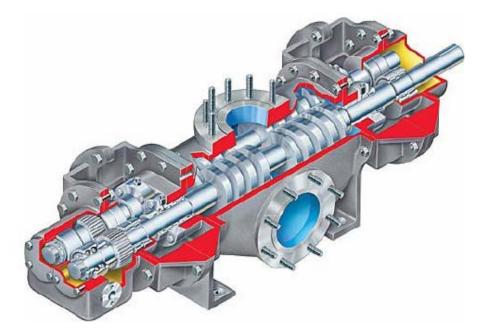
PISTON PUMP



FLOW FLUCTUATION

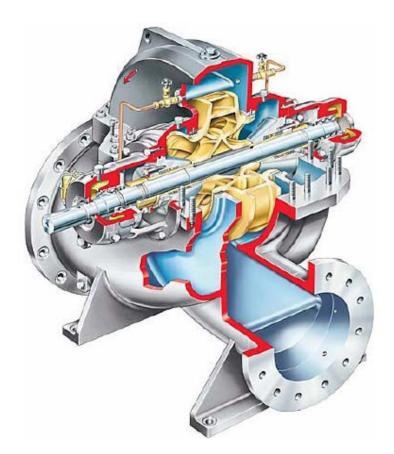

Install receiver tank to reduce fluctuation

DIAPHARGM PUMP


Avoid contact between fluid and pump mechanism

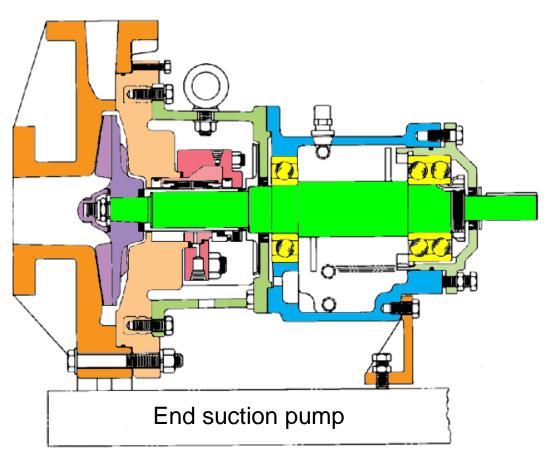
ROTARY GEAR PUMP


For high viscosity fluid


ROTARY SCREW PUMP

For very high viscosity fluid

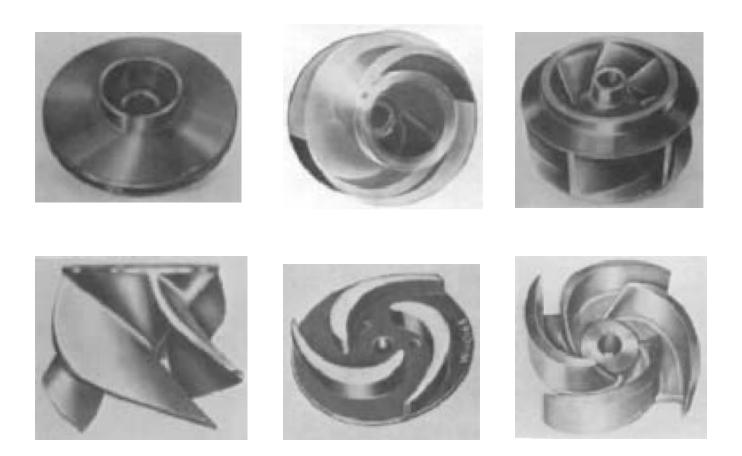
CENTRIFUGAL PUMP

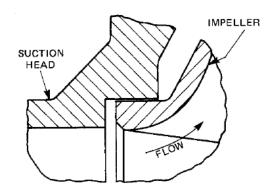


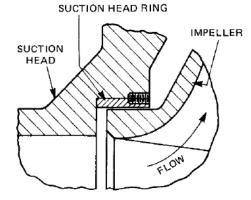
End suction

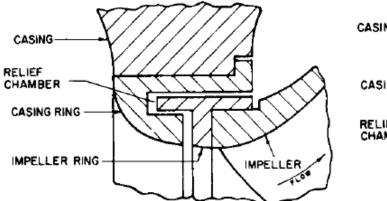
Split-case

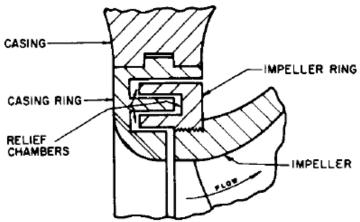
CENTRIFUGAL PUMP CONSTRUCTION


DEMONSTRATION UNITS

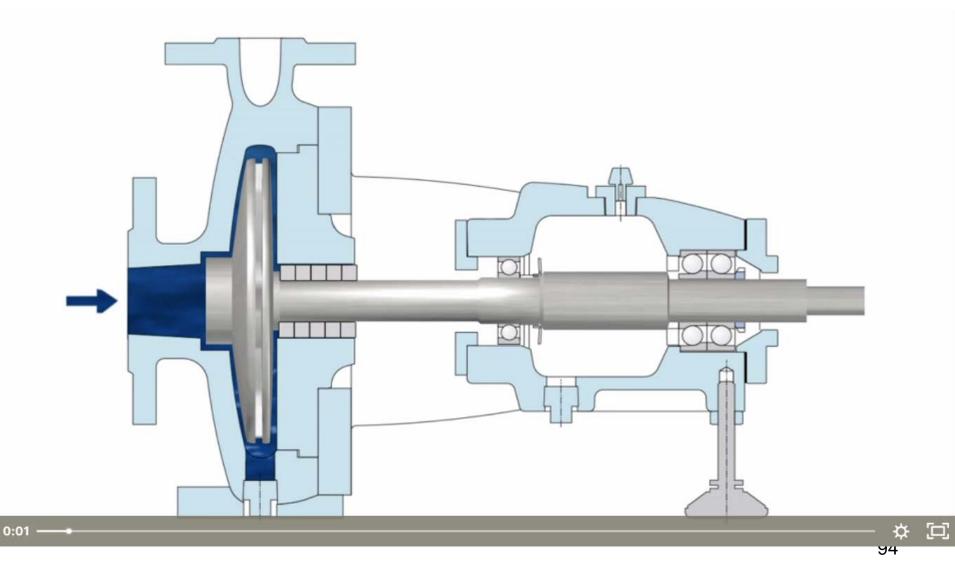


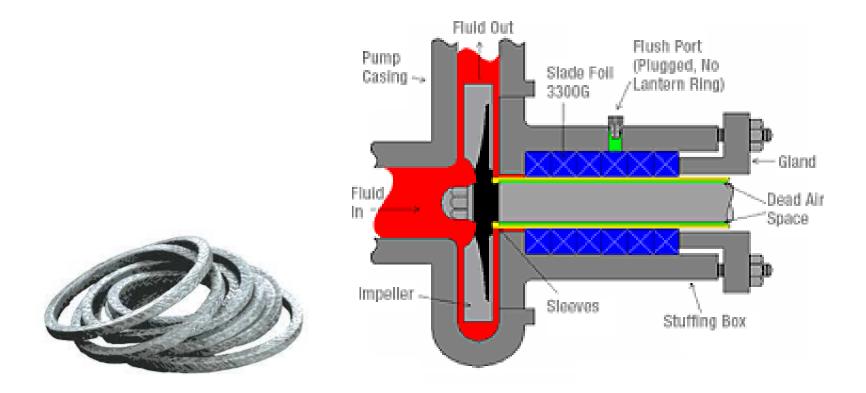


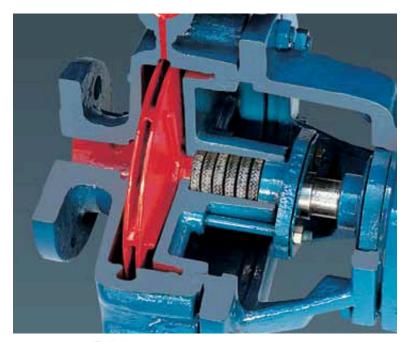

IMPELLERS

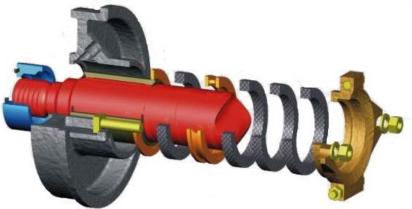


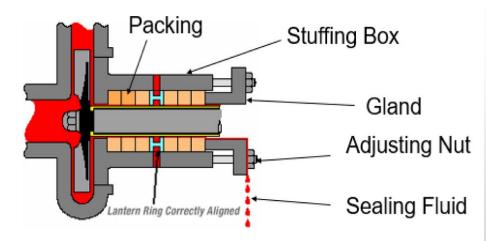
LEAKAGE JOINTS



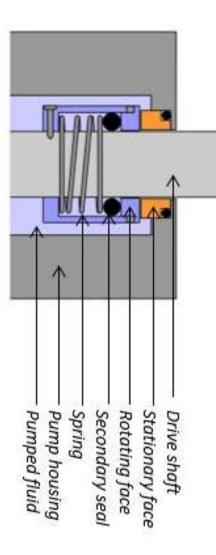



SHAFT SEALING

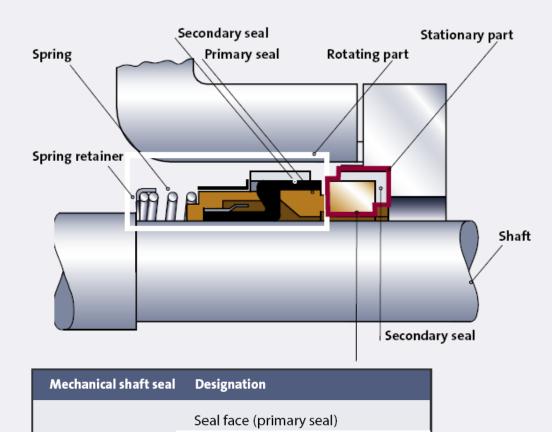



GLAND PACKING SEAL

GLAND PACKING SEAL



GLAND PACKING



MECHANICAL SEAL

MECHANICAL SEAL

Secondary seal

Spring retainer (torque transmission)

Seat (seal faces, primary seal)

Static seal (secondary seal)

Spring

Rotating part

Stationary part

HOME PUMP

HOME PUMP

INDUSTRIAL PUMP

INSTALLATION

NEXT SESSION

- Pipe drawing. Symbols.
- Cost estimation.
- Theory of flow in pipes.
- Calculation of pressure drop in pipes.
- Energy balance in fluid flow.

HOMEWORK 2

- 1) Locate one of automatic air vents in Thammasat university. Take a photo and explain the reason for having it in such location.
- 2) Compare weight per meter of a DN150 sch40 and sch80 steel pipe filled with water. Find percentage of the different base on sch40.