ME444 ENGINEERING PIPING SYSTEM DESIGN

CHAPTER 1: INTRODUCTION

TENTATIVE SCHEDULE

- BEFORE MIDTERM: THEORY OF FLOW IN PIPE, PIPE SIZING, PIPING MATERIALS, PUMP SELECTION
- AFTER MIDTERM: DESIGN OF VARIOUS PIPING SYSTEMS FOR BUILDINGS AND INDUSTRIES

Web: <u>http://dulyachot.me.engr.tu.ac.th</u> /me444/me444.htm

CONTENTS

- 1. INTRODUCTION
- 2. STANDARDS
- 3. BASIC UNITS
- 4. BASIC FLOW IN PIPE
- 5. QUICK LOOK AT PIPE DRAWINGS

1. INTRODUCTION

APPLICATIONS:

PLUMBING, FIRE PROTECTION, PROCESS, AIR-CONDITIONING, REFRIGERATION, VENTILATION, COMPRESSED GAS, STEAM

FUNCTION:

TRANSMIT FLUID AT A PREFERED RATE TO THE DESTINATIONS WITH PREFERRED PROPERTIES (I.E. PRESSURE, TEMPERATURE)

DESIGN CONCEPT

PIPING SYSTEM DESIGN

SOURCE

. . .

PRESSURE TEMPERATURE

END USERS' REQUIREMENTS

FLOW PRESSURE TEMPERATURE

PIPING SYSTEM

PUMP MATERIAL TYPE SIZE PIPE MATERIAL THICKNESS PATHS SIZES

VALVE & ACC.

2. STANDARDS

American National Standard Institute (ANSI)

American Petroleum Institute (API)

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

American Society of Mechanical Engineers (ASME)

ASME STANDARDS

- B31.1. Power Piping
- B31.2. Fuel Gas Piping
- B31.3. Process Piping
- B31.4. Pipeline Transportation Systems for Liquid Hydrocarbons
- and Other Liquids
- B31.5. Refrigeration Piping
- B31.8. Gas Transmission and Distribution Piping
- B31.9. Building Services Piping
- B31.11. Slurry Transportation Piping

STANDARDS

American Society of Testing and Materials (ASTM)

International Organization for Standardization (ISO)

American Water Works Association (AWWA)

National Sanitation Foundation (NSF)

STANDARDS

National Fire Protection Association (NFPA)

Factory Mutual Research Corporation (FM)

Underwriters Laboratories (UL)

STANDARDS

British Standard

Deutsches Institut für Normung

Japanese Industrial Standard

Old mark (expired)

วิศวกรรมสถานแห่งประเทศไทย ในพระบรมราชูปถัมภ

3. BASIC UNITS

PIPE SIZE: INCHES, mm. PIPE LENGTH: FEET, METRES VOLUME: CU.M., CU.FT., LITRES, GALLONS FLOWRATE: GPM, CU.M./H, LPS, LPM, CFM PRESSURE: PSI, BAR, m.WG., KG/CM² POWER: KW, HP

STUDENTS MUST HAVE THE CONVERSION FACTORS

7 basic quantities

ปริมาณ	หน่วยวัดในระบบเอสไอ	ตัวย่อ
ความยาว	เมตร	m
มวล	กิโลกรัม	kg
เวลา	วินาที	s
กระแสไฟฟ้า	แอมแปร์	А
อุณหภูมิ	เคลวิน	K
ปริมาณของสะสาร	โมล	m
ความส่องสว่าง	แรงเทียน (candela)	cd

Basic conversion

Length

- 1 in (inch) = 25.4 mm = 2.54 cm = 0.0254 m = 0.08333 ft
- 1 ft (foot) = 0.3048 m
- 1 m (meter) = 3.2808 ft = 39.37 in
- 1 km = 0.6214 mile = 3281 ft

Mass

1 kg = 1,000 g = 2.2046 lb 1 lb = 16 oz = 0.4536 kg =

Temperature

celsius, rankine, kelvin, centigrade, fahrenheit,

- 1 °C = 1.8 °F
- 1 °F = 0.555 °C
- 0 °C corresponds to 32 °F, 273.16 K and 491.69 R
- $T(^{\circ}R) = (9/5)T(K)$
- $T(^{\circ}F) = [T(^{\circ}C)](9/5) + 32$
- $T({}^{\circ}F) = [T(K) 273.15](9/5) + 32$
- $T(^{\circ}C) = 5/9[T(^{\circ}F) 32]$

Area

Length

- 1 in (inch) = 25.4 mm = 2.54 cm = 0.0254 m = 0.08333 ft
- 1 ft (foot) = 0.3048 m
- 1 m (meter) = 3.2808 ft = 39.37 in

1 km = 0.6214 mile = 3281 ft

Mass

1 kg = 1,000 g = 2.2046 lb 1 lb = 16 oz = 0.4536 kg =

Volume

barrel, gallon, cubic centimeter (cm³), cubic feet (foot³), cubic inch (inch³), cubic meter (meter³), cubic yard (yard³), quarts, liters, acre foot, board foot, bushel, cord, cup, dram, fluid ounce, peck, pint, quart, tablespoon, teaspoon,

- 1 Gallon (U.S.) = 3.785x10⁻³ m³ = 3.785 dm³ (liter) = 0.13368 ft³ = 4.951x10⁻³ yd³ = 0.8327
 Imp. gal (UK) = 4 Quarts = 8 Pints
- 1 Imp. gal (UK) = 4.546x10⁻³ m³ = 4.546 dm³ = 0.1605 ft³ = 5.946x10⁻³ yd³ = 1.201 gal (US)
- 1 dm³ (Liter) = 10⁻³ m³ = 0.03532 ft³ = 1.308x10⁻³ yd³ = 0.220 lmp gal (UK) = 0.2642
 Gallons (US) = 1.057 Quarts = 2.113 Pints
- 1 ft³ = 0.02832 m³ = 28.32 dm³ = 0.03704 yd³ = 6.229 lmp. gal (UK) = 7.481 gal (US) = 1,728 Cu.ln.

Volume Flowrate

- 1 m³/h = 2.7778x10⁻⁴ m³/s = 0.2778 dm³(litre)/s = 9.810x10⁻³ ft³/s = 0.5886 ft³/min (cfm) = 3.667 Imp.gal (UK)/min = 4.403 gal (US)/min
- 1 gal (US)/min =6.30888x10⁻⁵ m³/s = 0.227 m³/h = 0.06309 dm³(litre)/s = 2.228x10⁻³ ft³/s = 0.1337 ft³/min = 0.8327 Imperial gal (UK)/min

Velocity

foot/second, inch/second, meter/second, kilometer/hour, knot, mile/hour, nautical mile per hour

- 1 ft/s = 0.3048 m/s
- 1 ft/min = 5.08×10^{-3} m/s = 0.0183 km/h = 0.0114 mph
- 1 mph = 0.44703 m/s = 1.609 km/h = 88 ft/min = 5280 ft/hr = 1.467 Ft./sec. = 0.8684 knots
- 1 m/s = 3.6 km/h = 196.85 ft/min = 2.237 mph
- 1 km/h = 0.2778 m/s = 54.68 ft/min = 0.6214 mph = 0.5396 knot
- 1 knot (nautical mile per hour)= 0.51444444 m/s = 1.852 kilometers per hour = 1.1515 miles per hour= 1 nautical miles per hour

Velocity

Pressure

atmosphere, centimeters of mercury, foot of water, bar, barye, centimeter of water, dyne/centimeter², inch of mercury, inch of water, kgf/centimeter², kgf/meter², lbf/foot², lbf/inch² (psi), millibar, millimeter of mercury, pascal, torr, newton/meter²

- Standard Atmospheric Pressure 1 atm = 101.325 kN/m² = 101.325 kPa = 14.7 psia = 0 psig = 29.92 in Hg = 760 torr = 33.95 Ft.H₂O = 407.2 ln.W.G (Water Gauge) = 10.33 m.WG. = 2116.8 Lbs./Sq.Ft.
- 1 bar = $10^5 \text{ Pa} (\text{N/m}^2) = 0.1 \text{ N/mm}^2 = 10,197 \text{ kp/m}^2 = 10.20 \text{ m H}_2\text{O} = 0.9869 \text{ atm} = 14.50 \text{ psi} (\text{lb}_{\text{f}}/\text{in}^2) = 10^6 \text{ dyn/cm}^2 = 750 \text{ mmHg}$
- 1 psi (lb/in²) = 144 psf (lb_f/ft²) = 6,894.8 Pa (N/m²) = 6.895×10^{-3} N/mm² = 6.895×10^{-2} bar

Pressure Level (GAGE)

Energy

British Thermal Unit (Btu), calorie, joule, kilojoule, electron volt, erg, foot lb_f, foot poundal, kilocalorie, kilowatt hour, watt hour

1 Btu = ความร้อนที่ต้องใช้ในการเพิ่มอุณหภูมิของน้ำ 1 ปอนด์ ขึ้น 1°F (58.5 °F ถึง 59.5 °F) ที่ ระดับน้ำทะเล (ความดัน30 in.HG.).

1 calorie = ความร้อนที่ต้องใช้ในการเพิ่มอุณหภูมิของน้ำ 1 กรัม ขึ้น 1°C

- $1 \text{ kWh} = 3.6 \text{x} 10^6 \text{ J} = 3.671 \text{x} 10^5 \text{ kpm} = 859.9 \text{ kcal} = 2.656 \text{x} 10^6 \text{ ft } \text{lb}_{\text{f}} = 3.412 \text{x} 10^3 \text{ Btu}$
- 1 kJ = 1 kNm = 1kWs = 10³ J = 0.947813 Btu = 737.6 ft lb_f = 0.23884 kcal
- 1 Btu (British thermal unit) = 1,055.06 J = 107.6 kpm = 2.931x10⁻⁴ kWh = 0.252 kcal = 778.16 ft lb_f = 1.055x10¹⁰ ergs = 252 cal = 0.293 watt hour
- 1 cal = 4.186 J

Heat Flowrate and Power

- 1 kW = 1,000 Watts = 3,412 Btu/h = 737.6/550 British hp = 1.341 British hp = 10³/9.80665 kg_f m/s = 737.6 ft lb_f/s = 10³/(9.80665 75) metric hp
- 1 hp (English horse power) = 745.7 W = 0.746 kW = 550 ft lb/s = 2,545 Btu/h = 33.000 ft
 lb/m = 1.0139 metric horse power ~= 1.0 KVA
- 1 metric horse power = 736 W = 75 kg m/s = 0.986 English horse power
- 1 refrigeration Ton = 12,000 Btu/h cooling = 3.516 kW = 3,025.9 k Calories/h
- 1 Therm = 100,000 Btu/h
- 1 ft lb/s = 1.3558 W
- 1 Btu/s = 1055.1 W
- 1 Btu/h = 1 Btuh = 0.293 W = 0.001 MBH
- 1 Boiler Horse Power = 33,475.35 Bth/h = 9.81 kW

Viscosity

Viscosity dynamic (ความหนืด) – μ ความหนิดสัมบูรณ์

- 1 lb/(ft s) = 1.4879 Pa s = 14.88 P = 1,488 cP = 0.1517 kp s/m²
- 1 cP (Centipoise) = 10⁻³ Pa s = 0.01 P = 1.020x10⁻⁴ kp s/m² = 6.721x10⁻⁴ lb/(ft s) = 0.00100 (N s)/m²
- 1 kg/(m s) = 1 (N s)/m² = 0.6720 lb_m/(ft s) = 10 Poise
- 1 P (Poise) = 0.1 Pa s = 100 cP = 1.020x10⁻² kp s/m² = 6.721x10⁻² lb/(ft s) = 0.1 kg/ms
- 1 Pa s (N s/m²) = 10 P (Poise) = 10³ cP = 0.1020 kp s/m² = 0.6721 lb/(ft s)
- 1 kp s/m² = 9.80665 Pa s = 98.07 P = 9,807 cP = 6.591 lb/(ft s)
- 1 reyns = 1 1b_f s/in² = 6894.76 Pa s

Unit of Viscosity

Absolute or Dynamics viscosity, μ

 10^{-3} Pa.s = 1 cP (centipoise)

Properties of Some Fluids (approx.)

Fluids (Temp.)	Density (kg/m³)	Absolute Viscosity (Pa-s)
Air (30C)	1.16	18.6 x 10 ⁻⁶
Water (30C)	996	0.798 x 10 ⁻³
Sea water (30C)	1022	0.86 x 10 ⁻³
Bloods (37C)	1060	2.8 x 10 ⁻³
Ethanol (30C)	781	0.983 x 10 ⁻³
Kerosine (30C)	820	1.4 x 10 ⁻³
SAE 10W-30 Oil (30C)	840	0.09
Glycerin (30C)	1260	0.6
Mercury (30C)	13496	1.45 x 10 ⁻³

Kinematic Viscosity

Kinematic viscosity (nu) $V = \frac{\mu}{\rho}$

Units of kinematic viscosity are in m²/s or Stoke

 $1 \text{ St}(\text{Stokes}) = 10^{-4} \text{ m}^2/\text{s} = 1 \text{ cm}^2/\text{s}$

Since the *Stoke* is a large unit it is often divided by *100* into the smaller unit *centiStoke (cSt)* - where

•1 St = 100 cSt

- •1 cSt (centiStoke) = $10^{-6} m^2/s = 1 mm^2/s$
- •1 $m^2/s = 10^6$ centiStokes

Viscosity

Viscosity kinematic (ความหนีดเชิงจลนศาสตร์) – $v = (\mu / \rho)$

- $1 \text{ ft}^2/\text{s} = 0.0929 \text{ m}^2/\text{s}$
- $1 \text{ ft}^2/\text{ h} = 2.581 \text{x} 10^{-5} \text{m}^2/\text{s}$

• 1 St (Stokes) =
$$1 \times 10^{-4} \text{ m}^2/\text{s} = 100 \text{ cSt} = 1.076 \times 10^{-3} \text{ ft}^2/\text{s}$$

•
$$1 \text{ m}^2/\text{s} = 10^4 \text{ St} = 10^6 \text{ cSt} = 10.764 \text{ ft}^2/\text{s} = 38750 \text{ ft}^2/\text{h}$$

Water Properties

อุณหภูมิ	ความหนาแน่น	Dynamic Viscosity	Kinematic Viscosity	ความดันไอ
т	ρ	μ	v	
(°C)	kg/m ³	$(N.s/m^2) \ge 10^{-3}$	(x 10 ⁻⁶ m ² /s) *	(kPa)**
0 (น้ำแข็ง)	916.2			
0	999.9	1.787	1.787	0.87
5	1000	1.519	1.519	0.92
10	999.7	1.307	1.307	1.18
20	998.2	1.002	1.004	2.29
30	995.7	0.798	0.801	4.27
40	992.2	0.653	0.658	7.43
50	988.1	0.547	0.553	12.36
60	983.2	0.467	0.475	19.89
70	977.8	0.404	0.413	31.10
80	971.8	0.355	0.365	47.32
90	965.3	0.315	0.326	70.16
100	958.4	0.282	0.294	101.3
100 (ไอน้ำ)	0.598			

* 1x10⁻⁶ m²/s = 1 Centistroke ** 1 bar = 100 kPa

GUAGE PRESSURE

$$P_{guage} = P_{absolute} - P_{atm}$$

P_{guage} is obtained from pressure measuring device.

Atmospheric pressure

Pressure at sea level

At sea level $P_{atm} = 101.3 \text{ kPa}$ $P = \rho gh$

Water can be drawn upto h = $P_{atm}/\rho_{water}g$ = ?? m

Pressure and elevation

- In theory 1 barg of pressure can drive water up 10.2 m with zero flow.
- Waterworks Authority (MWA/PWA) attempt to deliver water at 1-2 barg.
- 2 barg = 20.4 m.WG. \rightarrow = 6 Floors !!
- In practical situations, pressure drops in main and branch pipes, water hardly reach 2nd floor, so people use pump.

City Water Pressure

ข้อมูลจาก World Enviroment and Water Resource Congress

Water pressure from PWA

8 Aug 2022 Klong Luang Patumthani

It's illegal to pump water from city main

4. BASIC FLOW IN PIPE

Flow Pattern

LAMINAR or TURBULENCE ?

Re < 2000

Re > 10000

REYNOLDS NUMBER

$$\operatorname{Re} = \frac{vD}{v}$$

Inertia vs. Viscous Effect

WATER FLOW AT 1.2 m/s IN A 1/2" PIPE

$$Re = \frac{1.2 \cdot 0.0125}{10^{-6}} = 15000 = \text{Turbulent}$$

MAJOR LOSS: LOSS IN PIPE

MINOR LOSS: LOSS IN FITTINGS AND VALVES

LOSS IN PIPE

LOSS IN PIPE CAUSED BY FRICTION BETWEEN FLUID AND PIPE SURFACE. FRICTION CAN BE RELATED TO SHEAR STRESS.

 $\tau = \mu \frac{du}{dy}$

VELOCITY AND LOSS

FLOW AND LOSS

FLUID VELOCITY IS RELATED TO THE FLOW RATE VIA PIPE SIZE

Thus.. $\Delta P \propto Q^2$

 $v = \frac{z}{\left(\underline{\pi D^2}\right)}$

FRICTION LOSS CHART

DESIGN VELOCITY 1.2 TO 2.4 m/s

÷

FRICTION LOSS EQUATION

HAZEN-WILLIAMS EQUATION (SI UNIT)

$$h_f = \left(\frac{151Q}{CD^{2.63}}\right)^{1.85}$$

DARCY WEISBACH EQUATION

$$h = f \frac{L}{D} \frac{v^2}{2g}$$

READING ASSIGNMENT: 3-2 FRICTION LOSS IN PIPE

MOODY DIAGRAM

MINOR LOSS

LOSS IN FITTING: USE EQUIVALENT LENGTH

LOSS IN VALVE: USE C_V OR K_V

(DISCUSS LATER)

5. QUICK LOOK AT PIPE DRAWINGS

51

NEXT SESSION

PIPING MATERIALS AND EQUIPMENTS VALVES PUMPS

HOMEWORK 1

- Find a water valve (for example, in a toilet, a kitchen or the backyard).
- Measure inlet pipe size. Draw or photograph the valve.
- Measure the flow rate in LPM from the valve at various valve opening positions (for exmple 25%, 50%, 75% and 100%).
- Find out the supply pressure (in m.WG.)
- Plot flowrate vs % open

