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ABSTRACT 
 
 

Optimum and Robust Designs of Mechanical Parts 
 
 

Dulyachot Cholaseuk 
 

 

 

Some problems in constrained geometric optimization are considered. The goal 

has been to maximize or minimize a measure of device performance computed using 

CAE, with a CAD compatible representation and specified geometric constraints. This 

approach illustrates several issues in the integration of CAD and CAE systems.  The free-

form geometry of the device is represented by Bezier curves. Analysis tools such as a grid 

generator and the solver for device’s performance are treated as a black box. The search 

pattern during the optimization process is suggested by the design of experiment 

methodology. The proposed framework is tested with four example problems: flow 

through a ninety degree bend in potential flow problem, a plane diffusers in laminar flow, 

an axisymmetric diffuser in laminar flow and a torque arm under static load. In all four 

problems the free form shape of the part is to be designed. 

 

An optimum design is not an acceptable engineering solution unless it is also 

robust. For this reason, a method to identify robust designs of mechanical parts with free-

form shapes is proposed. We attempt to quantify the robustness of a design by, first, 
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introducing noise to the design using a design of experiments approach. With this 

approach a fixed number of samples are generated around the design. Then we evaluate 

the performance of all the samples. Next, four quantities are computed, which are the 

mean, standard deviation, probability of failure and Taguchi’s signal-to-noise ratio 

(SNR). Finally, these four quantities are used to compare the robustness between different 

designs. The methodology is applied to the designs obtained from the four example 

optimization problems.  The results show that an optimum design is not necessarily 

robust. 

 

The previously mentioned portion of this work can be classified as a single 

objective design but, in practice, design problems usually involve multiple criteria. In the 

later part of the thesis we explore a multicriteria design problem. For this purpose the 

design of corrugated panel structures, a fixed form geometric design problem, is 

examined. The goal of this exercise is to find guidelines for robust-optimum design of 

these structures. For design optimization the objectives include maximizing natural 

frequency and minimizing maximum deflection for a given range of structural weight. 

The objectives of robust design are to maximize SNR with respect to natural frequency 

and maximum deflection. We consider all the objectives for optimality as well as 

robustness to formulate a multicriteria design problem. To solve this multicriteria design 

problem, a large data set of trial designs is generated over a range of structural weight. 

This data set not only allows us to perform an exhaustive search but also to fill the design 

space for robustness testing.  A finite element model is created for each trial design to 

solve for natural frequency and maximum deflection. The finite element solver is, again, 
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treated as a black box. SNR are then computed by gathering the information from the 

neighborhood of each design. The data set is then screened and reduced to a smaller set 

of feasible designs. Finally a set of robust-optimum designs is identified and design rules 

are extracted from this design set. 
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Chapter 1 

Introduction 

 

Design of mechanical parts frequently requires many engineering considerations, 

the primary ones being that the parts must provide the desired performance, they must be 

manufacturable and they must be robust. Designers also seek ways to improve an existing 

design to improve performance or for example to reduce its weight without a loss of 

performance. These considerations have been the subject of much academic research 

termed design optimization. Lack of consideration of all the primary issues however may 

sometimes lead to designs are either un-manufacturable or non-robust. To remedy this 

problem, the work reported in this thesis focuses on the issues of both robustness and 

optimality of a design.  

 

The use of computer-aided design (CAD) systems for describing geometry is now 

commonplace in industry. Complex shapes can be defined by a few control points using 

NURBS in order to efficiently describe, store and transmit geometry. These systems have 

been integrated with computer-aided manufacturing (CAM) systems to generate 

geometric representations of steps involved in manufacture of the part - e.g., tool paths 

for a CNC machine. The last three decades have also seen considerable advances in the 
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use of computational techniques (e.g., boundary integral, finite element, finite difference, 

finite volume techniques) for the analysis of mechanical problems.  These computational 

techniques fall in the realm of Computer Aided Engineering (CAE) systems. The 

maturing of CAE systems has led to the possibility of systematic improvements in design 

to achieve desirable properties and performance. When formalized this process is 

sometimes called “design optimization” if the performance can be characterized by an 

objective function and the design is systematically altered until the objective function is 

satisfied. Such a process now also falls within in the realm of CAE. Chapters 2 and 3 

provide related details on CAD and CAE. In Chapter 2, techniques for efficient 

representation of freeform geometry are presented. Some selected optimization 

techniques are compared in Chapter 3 and techniques suitable for this thesis are selected. 

 

Traditionally, analysis and design optimization (CAE components) have been 

carried out without considering the advantages or limitations afforded by CAD systems. 

In Chapter 4 the emphasis is placed on integration of the parametric representation of 

shape by CAD systems with CAE analysis tools and design optimization techniques. 

Bezier curves are used for representation of designed geometry, which is then optimized 

by means of gradient-based pattern search methods. CAE analysis tools such as the grid 

generators and the solvers for objective functions are treated as a “black box”. The 

proposed framework is tested with several design problems in fluid mechanics and elastic 

structures. 
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A method to identify robust designs of mechanical parts with free-form shapes is 

proposed in Chapter 5. For each design, the geometry and operating conditions represent 

one design point in the design space, with noise altering the design point leading to a 

change in performance. Robustness analysis is a process of quantifying such change. To 

demonstrate the methodology, robustness analysis is performed on the design problems 

examined in Chapter 4. For each problem, a set of iterative designs is generated during 

the optimization process with the final one being the optimum design. A design of 

experiments (DOE) approach is used to apply noise in order to generate samples around 

each and every iterative design point. Subsequently, we evaluate the performance of the 

samples. The mean, standard deviation of performance, probability of failure and signal-

to-noise ratio (SNR) (Taguchi, 1986) are then computed and used to compare the 

robustness of all the designs.  The results from the example problems show that an 

optimum design is not necessarily robust. 

 

In Chapters 4 and 5 the focus is on design of freeform parts. In practice, however 

there may be constraints that limit the designs to fixed forms. Chapter 6 focuses 

corrugated panel structures, a class of fixed form mechanical parts of industrial 

importance. These parts are of a fixed form that is easily to manufacture and generally 

provides high strength to weight ratio. They are however frequently prone to vibration, a 

problem common to plate and shell structures. With proper design the vibration problem 

can be minimized while maintaining the strength of the structure. Here we attempt to find 

design guidelines for optimum and robust corrugated panel structures. For design 

optimization the objectives include minimizing weight, maximizing natural frequency 
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and minimizing maximum deflection.  Robustness analysis is performed on all the 

designs using signal-to-noise ratio. The objectives of robust design are to maximize SNR 

with respect to natural frequency and to maximize SNR with respect to maximum 

deflection.  We considered both the design objectives for optimality and those for 

robustness and form a multicriteria design optimization problem. The outcomes of this 

process are robust-optimum designs.  Proposed design rules are extracted from those 

robust-optimum designs. 

 

The major technical contribution of this thesis is to provide a methodology that 

demonstrates how existing CAD and CAE tools can be integrated to design robust and 

optimum mechanical parts. The CAD tools are used to generate design instances. The 

CAE tools are used as function evaluators. Optimum and robust design methods are 

wrapped around these “design instance generators” and “function evaluators”. 

 

Concluding remarks are presented in Chapter 7. The “black box” solvers used in 

this study are described in the appendix. The sections that follow in this chapter provide 

brief overview of engineering design principles, and optimal design problems to show 

how our work fits in to the big picture. 
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1.1 Principles of engineering design 

Engineering design is a part of the product development process. According to 

Ulrich and Eppinger (1995), a generic product development process can be drawn 

roughly as shown Fig. 1.1. Our work fits within the engineering function of the detail 

design stage. 

 

 

Figure 1.1  Product development process. 

 

As said earlier, the primary considerations in engineering design are functionality, 

manufacturability and reliability. However as technological advancements and market 

competitiveness urge designers to set higher standards; better performance, time-to-

market, quality and cost also become significant. To deal with these issues, various 

engineering design principles have emerged. Some of them are: 

 

Optimal design: Design to maximize performance under limited resources (constraints). 

Probabilistic design (Haugen, 1968): Using means and standard deviations in the 

computation instead of nominal values for design variables and/or operating conditions, 

providing designers with probabilistic information. 

Robust design (Phadke, 1989): Design to reduce sensitivity to variations. 
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Axiomatic design (Suh, 1990): This design principle is at conceptual or system level. In 

an ideal design, functional requirements (or design objectives) and design variables 

should have a one-to-one relationship.  

Design for manufacturing and assembly or DFMA (Boothroyd, et. al. 1994): Reduce 

production cost and time and increase product quality by considering manufacturing and 

assembly issues during the design stage. 

Product Platform Design (Meyer and Lehnerd, 1997): Design parts as common parts that 

can be used in a variety of products. This requires a compromise of multiple objectives of 

the parts for different products. 

Key characteristics or KCs (Lee and Thornton, 1995): Key characteristics are features 

whose variations have the most effect on the overall product. Designers should identify 

and pay special attention to those features.  

 

Single objective optimum design without consideration of other issues may leads 

to a design that is very sensitive to variations (not robust) or is not manufacturable. This 

research is built around the use of design optimization.  The next section discusses some 

of the well-known categories of optimization problems and solution techniques. 
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1.2 Overview of design optimization problems 

To optimize the design is to find values of the design variables that minimize or 

maximize the objective function while satisfying the constraints (if there are any). For 

example one might want to maximize the surface quality of the machined parts by 

treating turning speed, tool tip radius and feed rate as design variables. Design 

optimization is a very broad area. Table 1 provides some of the possible classifications of 

the optimization problem by different criterions.  

 

Table 1 Classification of optimization problems. 

Criterions Classes 

Constraint Constrained*/unconstrained* 

Continuity of design space Continuous*/discrete/mixed-type 

Number of Objective function Single-objective*/multiple-objective*  

Type of objective function Linear/non-linear*; differentiable/non-differentiable*; 

Deterministic*/stochastic 

Objective Local*/global  

Application specific Geometric*/topology*/network/combinatorial/queuing/ 

space planning/scheduling and etc. 

 

The asterisks indicate the classes that are applicable to this research. Solution 

techniques depend on the particular type of problem. In general the techniques can be 

categorized as direct and indirect techniques. The direct or analytical techniques use 

principles of variational calculus to analytically obtain the optimum solution. 
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Applications of such techniques are limited because most engineering problems are too 

complex to solve analytically. Indirect techniques improve the designs iteratively. They 

require more computation but take less time to develop. They are more versatile and due 

the speed of today’s computer hardware and software, indirect techniques have become 

choice in engineering practice. 

 

The following is a list of some well-known indirect techniques for single-

objective optimization. 

 

Gradient-based methods  

These methods require derivative (gradient) information to move a design toward 

local optima. Examples of these methods are steepest descent method and Newton 

methods (and their modifications). In general a global optimum is not guaranteed.  

If the derivative information cannot be obtained analytically, finite difference 

techniques or response surface fits can be used to obtain the approximate 

information.  

 

Zero-th order methods  

These methods do not use derivative information but rely on logic and strategy. 

They usually incur more direct solutions than a gradient-based method. Examples 

of these methods are random search, pattern search, genetic algorithm and 

simulated annealing.  
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Mixtures of gradient-based and zero-th order techniques are also used.  The 

techniques mentioned could also be used in multicriteria optimization. To do so, multiple 

objectives are reduced to a single objective by methods such as the weighted sum of 

objectives, min-max method and goal programming.  This approach requires that 

different priorities be set for the objectives. Usually a single solution is expected. If, 

however, the priorities are not clear, exhaustive methods such as parameter space 

investigation are used to generate a feasible solution set and a set of extreme designs 

called “Pareto optimum solutions” are selected from the feasible solution set. More 

details of the indirect optimization techniques that are related to this work can be found in 

Chapter 3. 



 

 

Chapter 2   

 

Representations of Freeform Geometry 

 

The representation of part geometry should allow the design space to be explored 

by as few parameters as possible in order to minimize computational effort. It would also 

be desirable for this representation to be compatible with CAD tools.  Interpolation 

splines and NURBS such as B-spline and Bezier curves provide economic ways to 

describe freeform geometry. With a few control points these representations allow the 

shape of complex freeform geometry be controlled. This enables the development of an 

approximate mathematical model of the relationship between an objective function and 

the control point locations. The objective of shape optimization is then one of finding the 

locations of the control points that correspond to the optimum shape. These techniques 

are applicable to multi-dimensional geometry (curves, surfaces and hyper-surfaces) but 

since in the applications of interest in this study only two-dimensional geometry is 

required, we only discuss two-dimensional curves in this chapter.  
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Let niyx iii ,,2,1,0},,{ K==P  be a set of n + 1 control points and 

)}(),({)( tytxt =P  be a point on a curve defined by the control points at a parametric 

value t. Different representations can be used to relate control points to points on a curve. 

The frequently used representations are shown in Fig. 2.1a to d with the same set of 

control points.  The mathematical formulations for those curves are discussed in Sections 

2.1 to 2.3. Section 2.4 is an additional section that discusses the relationship between the 

movements of the control points and the geometry of a NURBS curve. 

 

 

 

Figure 2.1a Natural cubic interpolation spline. 
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Figure 2.1b Bezier curve. 
 

 
Figure 2.1c  Quardratic B-spline curve.  

 
 
 

 
Figure 2.1d  Cubic B-spline curve. 
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2.1  Interpolation splines 

An interpolation spline is a set of piecewise curves. The most common form is a 

cubic spline, which has continuous first and second derivatives. Between two consecutive 

points a piece of curve defined parametrically by a cubic polynomial is used to connect 

the two points. Following Ferziger (1998) a cubic polynomial in parametric form joining 

Pi and Pi+1 can be written as 
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where iii tt −=Δ +1 . Note that the index i starts from zero. The parameter it can be 

assigned to Pi as proportion to the total distance of straight lines running from P0 to Pi, 

i.e. 00 =t , 2
1

2
11 )()( −−− −+−+= iiiiii yyxxtt or as uniform value proportional to the 

index value i.e. iti = . 

 

To solve for the second derivatives, iP ′′ ’s, differentiate the polynomials in Eq. 2.1 

and match the values of the first derivatives at the control points; this provides the set of 

linear tridiagonal equations: 
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Different end conditions can be specified in Eq. 2.2; for examples with n + 1 control 

points 0P ′′ and 0=′′nP  provides natural spline, 10 −′′=′′ nPP  and 1PP ′′=′′n  is a periodic spline. 
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The good property of this type of spline is that the control points lie on the curve 

but the main disadvantage is that the curve exhibits oscillating or wiggle behavior that 

can be hard to control. One possible solution is to use tensioned spline but then the curve 

become computationally more expensive. Moreover, different amount of tension must be 

determined for different geometry.  

 

2.2  Bezier curves 

Bezier curves are the most basic form of NURBS. Unlike interpolation splines, 

the control points in this case do not necessarily lie on the curve or surface they represent. 

A Bezier curve with n + 1 control points is an nth degree Bezier curve. Mathematically an 

nth degree Bezier curve can be evaluated in a parametric form by the following equation.  

∑
=

=
n

i
i

n
i tBt

0
)()( PP  (2.3)

where 10 ≤≤ t  and n
iB are basis functions, which are Bernstein polynomials, 

iinn
i tt

ini
ntB −−
−

= )1(
)!(!

!)( .  Note that the Bernstein polynomials can be evaluated 

robustly by de Casteljau algorithm, which are repeated convex interpolations of control 

points (see Farin, 1993 and Hoschek and Lasser, 1993). Each Bezier curve is a one-piece 

curve; this means a movement of one control point affects the shape of the whole curve.  

 

Some useful geometrical properties of the Bezier curves are 

1. Convex hull: A planar Bezier curve always lays inside the convex hull formed by its 

control points (Fig. 2.2). 
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2. End slopes: The slope at each end of a Bezier curve always equals to the slope of the 

corresponding polyline that connects the end control point to the adjacent control 

point. 

 

 

 
 

 

 

 

 

Figure 2.2 Convex hull property of a Bezier curve. Shaded area represents the 
convex hull. 

 

3. Degree elevation: An nth-degree Bezier curve can be exactly represented by a (n + 1)th 
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Figure 2.3 Degree elevation of Bezier curve. 
 

Despite their useful properties, Bezier curves have some disadvantages. The 

curves are sometimes considered too stiff, i.e. the curves are less sensitive to the 

movement of the control points.  Also as control points increase, the Bernstein 

polynomials are of a higher degree, resulting in costly computation. The use of B-splines 

alleviates these problems. 

 

2.3  B-spline curves 

A B-spline curve is a set of piece wise curves with each piece being a Bezier 

curve.  A B-spline curve of order k consists of n – k + 1 Bezier curves of degree k - 1 

joined together at the break points. In addition to control points, B-spline curves depend 

on a knot vector. A set of parametric values it ’s form a knot vector   

},,,,{ 210 knttttT += K . 

 

Examples of k = 2 and 3 are shown in Fig. 2.1c and d respectively.  
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The steps to draw a B-spline curve of k order are the following. First, determine the knot 

vector, the simplest being the uniform knot sequences in Eq. 2.5 
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Next step is to obtain B-spline basis function )(tN k
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and use the recursive formula in Eq. (2.7) to compute the higher order basis functions.  
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Then compute the coordinate on the B-spline curve by Eq. (2.8). 
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Note that more flexibility can be added to a B-spline curve by using non-uniform 

knot sequences and assigning additional weighting factors to the terms in Eq. 2.8; in 

doing so the curve becomes a NURBS curve. In additional to control point locations, 

control parameters for a NURBS curve are knot values and weighting factors.  

 

B-spline curves have the same convex hull and end slopes properties as Bezier 

curves but not the degree elevation property. Note that when k = n + 1 B-spline curves 

become the same as the Bezier curves. Using Eq. 2.4 to increase number of control points 
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will change the shape of the curves. Instead one can increase the number of control points 

without changing the shape of the B-spline curve by knot insertion. The knot insertion 

process requires specific information, i.e. ones has to specify where to add the new 

control points, which is not preferred in this study because the information about location 

of the new control points is not available. Details about knot insertion and all other 

aspects of B-spline curves can be found in Farin (1993). 

 

2.4 Sensitivity of a NURBS curve to movements of its control 

points 

In order to use control points as the design variables and vary them to obtain 

optimum geometry as mentioned in the introduction, we need to know the sensitivity of 

the geometry of the curve to the variations in control point locations. This issue has been 

explored by Pottmann et. al. (2000) using the notation of “tolerance zones”. The 

development of a tolerance zone is based on the result of convex combination of two 

convex domains as shown in Fig. 2.4.  

 

 

 

 

 

Figure 2.4 Linear interpolation of convex tolerance zones Q0 and Q1. 
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Given points P0 and P1 with corresponding convex tolerance regions Q0 and Q1 such that 

P0 ∈ Q0 and P1 ∈ Q1, the point Pt defined by a linear interpolation of P0 and P1  

Pt = (1 - t)P0 + tP1, 

we seek the tolerance zone Qt such that Pt ∈ Qt. Pottmann et. al. (2000) show that Qt is 

given by a linear interpolation of Q0 and Q1  

Qt = (1 - t)Q0 + tQ1. 

 

As mentioned in section 2.2, Bernstein polynomials, which are the basis functions 

for all the NURBS curves can also be constructed using repeated convex interpolations of 

control points (de Casteljau algorithm). This allows the application of the tolerance zone 

idea for NURBS curves. The simplified result is: if the tolerance zones of the control 

points are of the same shape Z then the tolerance zone of the NURBS curve is formed by 

sweeping Z along the nominal curve. Fig. 2.5 shows an example where Z is a circular 

zone. Note that this result is not applicable to the interpolation splines. The more complex 

cases where control points have different shapes of tolerance zones can be found in 

Pottmann et. al. (2000).  

 

 

Figure 2.5 Tolerance zones of control points and of the corresponding NURBS 
curve. 
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 Later, when we need to generate several shapes in the neighborhood of the 

original design shape, we will use this tolerance zone idea. We will choose instances of 

control points from a neighborhood Z centered at the original location of the control 

points. We are then guaranteed that the resulting curves will all lie within the swept 

tolerance zone as shown in Fig. 2.5.  

 



 

 

Chapter 3 

Optimization Techniques 

 

Optimization techniques can be classified into two types, direct and indirect 

techniques. The direct or analytical techniques use principles of variational calculus to 

analytically obtain the optimum solutions. Applications of these techniques are limited 

because most engineering problems are too complex to solve analytically. Indirect 

techniques improve a design iteratively. They require more computation but take less 

time to develop. They are more versatile and due to the high speed and low cost of 

computing, indirect techniques have emerged as the preferred techniques. This chapter 

presents some of the indirect optimization techniques that are related to the work in this 

thesis.  To discuss optimization techniques, it is necessary to introduce some 

mathematical notations. First, let us define the optimization problem as 

 

Find d that minimize (or maximize) F(d). 

 

Here F is a set of objective functions (vector quantity) F = (f1, f2, f3, …, fm)T , m = 1 for 

single-objective and m > 1 for multiple-objective or the so-called multicriteria 

optimization problems. d is a set of design variables (or the so-called design point or 
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design vector or just “design”), d = (d1, d2, d3, …, dn)T and n is number of design 

variables or degrees of freedom (D.O.F.) or the so-called dimension of the design space.  

 

The following are a few techniques that are well known for single-objective and 

multicriteria optimization problems in engineering applications.  

 

 

3.1 Single objective optimization 

Optimization methods presented in this section require derivatives or sensitivity 

information to iteratively improve a design.  Two of the fundamental methods are 

presented in 3.1.1 and 3.1.2. We only consider the cases where the derivative information 

cannot be obtained analytically, but can be estimated by design of experiments 

techniques described in section 3.1.3. Solutions by these methods are usually local 

optima.  The normal practice is to move a design in the direction that should improve an 

objective function. This can be written as 

d* = d + α s (3.1)

where d* is a new design, d is an existing design, α is an adjustment coefficient and s is a 

direction vector. The design becomes optimum when the size of the gradient reaches 

zero. There are many methods to compute the direction vector; the following are two 

basic methods illustrating minimization. 
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3.1.1 Newton method  

This method is based on the Taylor series expansion. First, let us assume that the point d 

+ s is an optimum design. We approximate f(d + s) using tree-term Taylor series 

expansion, 

)(ˆ sd +f = f(d) + gTs + ½ sTHs,   (3.2)

where f̂  is an approximate of f, g = ∇f(d) is a gradient and H = ∇2f(d ) is a Hessian. If 

)(ˆ sd +f  is minimized then 
s

sd
d

fd )(ˆ +  = 0, so we differentiate Eq. 3.2 with respect to s 

and obtain 

Hs = -g. (3.3)

 

We can then solve Eq. 3.3 for vector s and use it in Eq. 3.1. Usually some 

modifications are required to ensure the convergence or to reduce the number of samples, 

which is required to estimate the gradient and Hessian. Those modifications are truncated 

Newton methods, quasi-Newton Methods, etc. 

 

3.1.2 Steepest descent method 

This method can be best described with Fig. 3.1. To minimize an objective 

function, the design is moved in the direction opposite to the gradient.  

s = - 
g
g  (3.4)

When use in Eq. 3.1, α is about the same as the search radius, R, that is used to estimate 

the gradient (this is explained in 3.1.3). 
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Figure 3.1 Graphical representation of steepest descent method for n = 2. 

 

3.1.3 Design of experiments method 

Design of experiments (DOE) is part of a collection of statistical and 

mathematical techniques called response surface methodology (Myers and Montgomery, 

1995). The idea is that by systematically sampling the design space one can build a 

mathematical model called response surface (or response function) to approximate the 

behavior of the objective function.  Once the response function is built an estimate of 

gradient ĝ (and Hessian Ĥ , if applicable) can be computed and used instead of the exact 

gradient in the optimization process.  Several techniques are available depending on what 

the users want from the model. The following are some of the techniques. 
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Central difference 

This method use a simple central difference pattern shown in Fig. 3.2 (n = 2) and 

Fig. 3.4a (n = 3) to estimate a gradient and diagonal components of a Hessian without an 

intention to fit a response function.  

i

ii
i d

ffg
Δ
−

=
−+

2
ˆ  and 2

2ˆ
i

ii
ii d

fffH
Δ

+−
=

−+

 where f = f(d), ),...,,...,,( 21 niii dddddff Δ+=+ , 

),...,,...,,( 21 niii dddddff Δ−=−  and idΔ ’s are step sizes. The search radius, R, is the 

same as the step size or equal to 1 if the design space is coded as shown in Fig. 3.2b. 

 

(1,0)

1d

2d

1dΔ

1dΔ

2dΔ 2dΔ
(0,1)

(0,-1)

(-1,0)

1=R

 

(a) uncoded   (b) coded 

Figure 3.2 Finite difference pattern for n = 2. 

 

Two level factorial design (2n) 

The method is briefly described here, with a detailed description given in Box et 

al. (1979). Samples are selected on vertices of a hypercube (shown in Fig. 3.3 for n = 2 

and Fig. 3.4b for n = 3), which makes a number of samples 2n. Although the center point 

is not required as a part of the samples, in an optimization process the value of the 

objective function at the center point must also be known. This makes the total number of 
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samples 2n + 1. The primary use of this design is to find main effects and cross-effects of 

design variables on an objective function by fitting a multi linear response function.  

 

A two-dimensional case (n = 2) in Fig. 3.3 will be used to demonstrate the 

process. A step size is specified for each design variable di denoted as Δdi. These are then 

used to obtain a coded design point D. Each design variable is coded by 
i

ii
i d

ddD
Δ
−

=
0

 

where the super script zero denotes the initial value (the center point in Fig. 3.3a and b) 

so that 00 =iD  and a coded step sizes equal unity.  Experiments (direct solutions for the 

objective function) are conducted on four sample points (the four vertices in Fig. 3.3a and 

b). From the geometry of the search shown in Fig. 3.3b, the radius of the search in coded 

form is R = n . 

(1,1)

(1,-1)

2=R

1d

2d

1dΔ

1dΔ

2dΔ 2dΔ

(-1,-1)

(-1,1)

 
(a) uncoded   (b) coded 

 
Figure 3.3 Two-level DOE search pattern for n = 2. 

 

Once the experiments are completed, one can build an approximate mathematical 

model from this data.  For small Δdi’s, )(ˆ Df , an estimate of an objective function f(d), 

can be created as a multi-linear function, 
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Here, k = 2n. 

For the case of n = 2, the multi linear function in Eq. 3.5 becomes  

 21423121)(ˆ DDcDcDccf +++=D . 

 

A matrix equation can be set up to solve for the coefficients ci’s as the following.  

fcE =⋅  (3.6)
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By using Yate’s algorithm in Eq. 3.7 (described in Box et al., 1979), the coefficients ic ’s 

can be easily obtained without inverting matrix E.  

 

(D1) (D2)  (D1D2)   
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Once the model is built a gradient at point D0 can be obtained by differentiating the 

model. Because of the coding, values of the coded design variables are zero at the initial 

point and this causes the gradient in coded form to be },...,,{ 132 +nccc . After decoding, the 

actual gradient can be estimated as },...,,{ˆ 1

2

3

1

2

n

n

d
c

d
c

d
c

ΔΔΔ
= +g . 

 

Composite Designs  

To fit a second order response function (Eq. 3.8) for n design variables at lease ns 

= 12
2

)1(
++

− nnn  samples are needed.   
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 (3.8)

 

DOE techniques that use exactly ns samples are called saturated designs. Saturated 

designs are not preferred mainly because they cannot handle “noise” (here noise refers to 

non-smoothness in the response surface such as that caused by truncation errors during 

the computation of an objective function). Composite designs are near saturated methods 

that use close to (but no less than) ns samples to fit a response function and the excess 

samples help in smoothing out the effect of noise. Some of these methods are central 

composite design-CCD (Box and Wilson, 1951), Box-Behnken Design-BBD (Box and 
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Behnken, 1960) and small composite design-SCD.  Figure 3.4 shows a comparison of 

sampling patterns for different kinds of DOE techniques. 

 

 

 

 

 

 

 

 

 

Figure 3.4 Sampling pattern of different design experiments for n = 3. 

 

BBD has a comparable number of samples to CCD but it provides relatively poor fitting 

at the corners area (vertices of the cube). CCD combines central difference with two-level 

factorial design to produce the total of nccd = 2n + 2n + 1 samples, which provides 

excellent fitting, but for large n, it becomes too expensive. SCD uses half-factorial (2n-1) 

and central difference, which requires 2n-1 + 2n + 1, is an alternative that produces a 

second order response function. Detail of response function fittings can be found in 

Appendix A where a matrix equation is set to solve for the values of coefficients, ci by 

the least square method. Once the coefficients are computed, the gradient and Hessian 

can be estimated accordingly. Details of the composite designs and other DOE techniques 

can be found in Myers and Montgomery (1995) 

(a) Central difference (b) 2n (c) CCD 

(e) SCD (d) BBD
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3.1.4 Comparison of single objective optimization techniques 

To select the right technique it is required to consider the following issues: (a) 

numbers of direct solutions required, (b) degrees of freedom, (c) efficiency and (d) nature 

of the objective function.  

 

For our applications, the geometry of the parts can be represented with a few 

control points using NURBS. After geometric constraints are applied, the degrees of 

freedom usually lie between 2 and 5. Figure 3.5 compares numbers of samples (one 

sample is one direct solution) used in different DOE techniques for one iteration. SCD 

and 2n factorial use comparable numbers of samples while central difference use the least. 

But as far as the total numbers of direct solutions are concerned all the techniques are 

quite comparable since central difference may require more iterations to converge than 

the other two techniques.  

 

The nature of the objective function is the prime issue that determines the choice 

of the optimization techniques. In this thesis, objective functions are evaluated by solving 

differential equations. The solvers themselves have unavoidable truncation errors and 

errors due to approximations. Those errors are then built into the objective function and 

so it can be consider that the objective functions come with certain amount of “noise”.  

The existence of noise makes it preferable to use low order model. For this reason we 

choose steepest descent method with variable step size for the optimization process in 

Chapter 4. The details of the process are described in Section 4.1. Primarily, two-level 
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factorial design is used for gradient approximation and in cases of large n we use central 

difference method. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.5 Comparison of numbers of samples used by different DOE 
techniques. 
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3.2 Multicriteria optimization 

In case of a multicriteria optimization problem, one approach to solve the problem 

is to reduce the complexity of the problem so that the techniques for single-objective can 

be utilized. Solution techniques base on this approach result in a single solution. Another 

approach is to retain multiple objectives and try to find a set of possible optimum 

solutions. The following are some well-known solution techniques.  

 

3.2.1 Weight objectives 

This is the most primitive method; the idea being to assign different weights or 

priorities, to different objectives in forms of coefficients, wi. The new objective function, 

f(d), is then a weighted-sum of all the objectives as shown in Eq. 3.9. 

f(d) = ∑
=

m

i
ii fw

1
 (3.9)

The coefficient wi are usually scaled to satisfy Eq. 3.10. 

∑
=

m

i
iw

1
 = 1 (3.10)

 

3.2.2 Min-max method 

 This method is best described by the following formulation. First we set up target 

or ideal values *
if  for all objective functions. Next, re-scale each objective function fi 

using *
if  as a reference.   

zi(d) = *

*)(

i

ii

f
ff −d ,  i = 1,2,3, …, m (3.11)
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Finally, a new objective function is obtained from Eq. 3.12. 

f(d) = 
mi ,...,3,2,1

max
=

zi(d) (3.12)

And a new single-objective optimization problem is 

Minimize f(d).  

See Hook and Jeeves (1961) for more detail. 

 

3.2.3 Goal programming  

With this method, quantitative goals are set to all objectives as constraints. 

Priorities are assigned to all the objectives. The optimization process is performed on the 

highest priority objective first with the constraints set. Then the process is repeated for 

lower priority objectives with an additional constraint that the optimum values of the 

higher priority objectives must also be met. The process goes all the way down to the 

least priority objective. More detail can be found in Ignizio (1976). 

 

3.2.4 Global criteria method  

In global criteria method (GCM) (Hwang and Masud, 1979), the new objective 

function is taken to be a measurement of closeness between points formed by the value of 

objective functions and the target or ideal value the objective functions. Figure 3.6 shows 

a graphical representation of this method, where two objective functions f1 and f2 are 

minimized. Each point represents a performance of one design. The closed curve shown 

in Fig. 3.6 bounds the region of feasible solutions. Point F* = ( *
1f , *

2f ) is an ideal 

solution. With this method point a, which is closest to F*, is the optimum solution. The 

formulation for the new objective function f(d) is given in Eq. 3.13. 
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f(d) = 
ppm

i i

ii

f
ff

1

1
*

*)(
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −∑
=

d  (3.13)

When p = 2, f is a measure of distance but other real values also can be used.  

 

 

 

 

 

 

 

 

Figure 3.6 Graphical representation of GCM. (Pareto optimum solutions is 
explained in 3.2.5). 

 

3.2.5 Parameter space investigation method  

Parameter space investigation or PSI method is proposed by Statnikov and 

Matusov (1995). This method is used when there are not enough constraints or preference 

information to solve the problem by the methods described in 3.2.1 to 3.2.4. It requires 

that designers first generate a set of trial designs covering the entire design space. Then 

they solve for objective functions and analyze the results and determine suitable 

constraints on objective functions. With the constraints a feasible region is set up as the 

last step in a decision making process to choose “Pareto optimum solutions” (Pareto, 

1906), which is a set of possible-optimum solutions that compromise all objectives as 

shown in Fig. 3.6.   
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Chapter 4 

Optimum Geometric Design of Freeform 

Mechanical Parts 

 

Earlier work in optimum design of fluid flow devices provided a reference point 

for the present effort. The Navier-Stokes equations are a set of nonlinear partial 

differential equations that are elliptic in space for steady, incompressible flow. Using 

ideas of variational calculus and optimal control it is possible to derive adjoint equations, 

the solution to which can provide the direction and magnitude in shape change that can 

ensure improvement in a specified objective function. A comprehensive review of such 

and other techniques is provided by Pironneau (1984) and Labrujere and Slooff (1993). 

Using the ideas of Pironneau, optimum laminar flow diffusers were considered by Cabuk 

and Modi (1992).  Similar ideas were also used in Huan and Modi (1996) for design of 

airfoils for minimum drag. These studies are, however, limited in the choice of objective 

functions, choice of boundary conditions and geometry constraints. Consequently, in 

spite of their computational efficiency, their applicability to practical problems is limited. 
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One can also possibly use derivative-free methods, treat the solver as a black box, and 

use a simplex search or genetic algorithm to carry out the optimization. But the high 

computational cost associated with each direct solution of some non-linear problems such 

as fluid flow problems makes such an approach impractical.   

 

The present study seeks a generic optimization algorithm that is independent of 

the precise governing equation, boundary conditions and geometric constraints.  Towards 

this goal a pattern search method based on the design of experiments (DOE) techniques is 

utilized in the optimizer to determine the derivative information.  These ideas have also 

been explored for a structural optimization problem by Zagajac (1998).   

 

To achieve our goal, the representation of geometry should allow the design space 

to be explored by as few parameters as possible in order to minimize computational 

effort. It would also be desirable for this representation to be compatible with CAD tools.  

NURBS provide an economic way to describe a shape. With a few control points, the 

shape of the curve (the idea can also be extended to 3 dimensional surfaces) can be 

controlled. This allows the development of an approximate mathematical model of the 

relationship between the objective function and the control point locations. The goal of 

shape optimization is to find the locations of the control points that correspond to the 

optimum shape.   In Fig. 4.1, the optimizer performs optimization on the control point 

locations and uses the geometrical processor to convert the control point locations to the 

boundary points on the NURBS curves. The approach treats the solver as a black box. As 
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shown in Fig. 4.1, inputs to the black box are the geometry together with material 

properties and boundary conditions. Output from the black box is the solution field.  

 

 

 

 

 

 

 

 

Figure 4.1  Overview of the optimization process. 

 

In Section 4.1 optimization procedures are formed by combining two-level DOE 

technique with steepest descent method.  The optimizer is utilized with a freeform 

geometry representation to form the shape optimization algorithm described in Section 

4.2. In Section 4.3 the optimization algorithm is first verified using an idealized problem 

of designing a ninety-degree bend in two-dimensional potential flow. Then the problems 

of the design of plane and axisymmetric two-dimensional diffusers in laminar flow are 

considered followed by a solid mechanics problem of designing a minimum weight 

torque arm. These results are discussed in Section 4.4 

Control 
point 

locations
 
 

Optimizer 
(DOE) 

Solution 
field 

Initial shape 
(initial control 

point  locations) 

Optimum shape 
(optimum control 
point  locations) 

 

Grid  
Generator 

 
Geometrical 

processor 

Boundary 
points 

 
Post 

 processor 
Value of 
objective 
function 

Solver 

Optimization 
parameters 

Necessary information such as 
material properties, boundary 
condition, etc. 



        

 

38

4.1  Optimization procedures 

 We use an iterative approach to improve from an initial design d0 to the new 

design d1 such that the objective function f(d1) is better (higher for minimization; lower 

for minimization) than f(d0).    DOE technique is used to conduct a pattern search as well 

as to estimate the gradient. Eq. 3.1 can be re-written to use specifically with the steepest 

descent method as 

gdd ˆ0* ⋅Δ⋅±= dq  (4.1)

(plus for maximization and minus for minimization), 

where d* is the tentative design point for which we expect f(d*) to be an improvement 

over f(d0); q is an adjustment factor, which should not be much larger than the coded 

radius of the search. Note that the coded radius of the search is equal to 1 for central 

difference and n  for two-level DOE as described in 3.1.3. In the above, Δd is a step 

size and ĝ is the estimated gradient. 

 

The tentative point *d  is not yet the point 1d  for the next iteration. Assume that the 

optimization problem is that of maximizing the objective function. In order to determine 

the new point we must consider the following three cases: 

 

Case 1. )( *df  is higher than the objective function at the initial point and all the sample 

points. Then the search continues along the steepest direction until there is no 

further improvement of the objective function. The next iteration begins at this 

point.  
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Case 2. The best design is found during the DOE process. Then that design is chosen as 

the initial point for the next iteration.  

 

Case 3. No improvement is found. In this case a smaller step size, specifically half the 

initial size, is used and the whole process is repeated until the step size is smaller 

than some critical value. The search also terminates when the size of the gradient 

becomes close to zero or when the number of iterations reaches a predetermined 

value. 

 

The search pattern for maximizing )(df during one such iteration process for 2=n  is 

shown in Fig. 4.4 where the first and the third iterations correspond to case 1, the second 

iteration to case 2 and the fourth, fifth and the sixth iterations to case 3. 

 

The use of lower order methods for DOE allows us to limit a number of samples 

to a manageable level while allowing an estimate of the local gradient with sufficient 

accuracy. As described in case 3, when there is no improvement in the search, it is logical 

to assume that the optimum point lies within the search radius so the optimizer reduces 

the step size. This allows the optimizer to converge to a local optimum without having to 

use a higher order scheme. Accuracy of the optimum solution corresponds to the smallest 

step size used. 
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Figure 4.2 Search pattern in a maximization problem with n = 2 using two-level 

DOE. 
 
 

4.2  Algorithm for geometric optimization  

In Fig. 4.1, the optimization is performed on the control point locations and a 

geometrical processor is used to convert the control point locations to boundary points on 

a curve. The approach treats the solver as a black box. As shown in Fig. 4.1, inputs to the 

black box are geometry of the parts, material properties and boundary conditions. Output 

from the black box is the solution of the objective function. The optimization procedure 

is described next. 

 

Iteration 3 
f6,3 is a maximum 
(case 1) 

f0,1 

f1,1 f2,1 

f3,1 f4,1 

f0,2 = f6,1 

f1,2 

f2,3 

f3,2 f4,2 

f5,1 

f0,3 = f2,2 

f1,3 

f4,3 

f3,3 

f5,3 

Iteration 1 
f6,1 is a maximum 
(case 1) 

Iteration 2 
f2,2 is a maximum 
(case 2) 

Iterations 4,5,6 
f6,3 is a maximum 
(case 3) 

f6,3 
f7,1 

qΔd 

f5,2 



        

 

41

Step 1.  Represent the initial boundary of interest with a Bezier curve (or a B-spline 

curve) described in Chapter 2 using m control points.  The initial optimization parameters 

are also specified at this step. These are: the initial step size, the smallest step size, the 

maximum number of iterations and the maximum number of control points.  Value of an 

objective function f depends on the locations of the control points.  

),,,,( 210 mff PPPP K=  

   

Step 2.  Apply geometrical constraints to the control points.  

These constraints may consist of  

 a) fixing the end point of the curve  

 b) fixing either x- or y-coordinates of all the control points  

 c) fixing the slope at one of the end points of the curve.   

When this is done, the total number of variables is reduced. The remaining coordinates 

are considered to be the n design variables (degrees of freedom = n) and together they 

form the vector of design variable d. 

  

Step 3.  Use the optimization procedures described in Section 4.1 to find a new design 

point given by the values of the n variables in order to improve the objective function. 

The new values of the n variables at each iteration define the new locations of the control 

points. These control points describe the new shape of the curve and hence the boundary 

points on the new curve. Note that the black-box solver (consisting of the grid generator 

and the flow solver) is used to compute the values of the objective function for any given 
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set of boundary points on the curve.  Each implementation of step 3 is considered one 

design iteration. Note that each design iteration consists of several direct solutions.  

 

Step 4.  Check whether the following criteria are satisfied.  

a) the step size is smaller than prescribed smallest critical size 

b) there is no improvement in the objective function for two consecutive iterations  

c) the prescribed maximum number of iterations has been reached.  

d) Size of the gradient vector is smaller than the prescribed value. 

If none of these conditions is met then return to step 3. If any of these conditions is met, 

then go to step 5. 

 

Step 5.  Check if any of the following two conditions is met. 

a) There has been no improvement in the objective function between the current shape 

represented by m control point and the shape obtained using m + 1 control points 

b) The prescribed maximum number of control point is reached.  

If either of these conditions is met then stop the entire optimization process. If not, then 

increase the number of control points. For a Bezier curve, use of degree elevation leads to 

the same shape. For a B-spline curve, addition of one more control point using degree 

elevation algorithm leads to minor change in shape. Repeat the optimization process by 

returning to step 2. 
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4.3  Example problems 

4.3.1 Ninety-degree bend in potential flow 

An idealized problem of a two-dimensional potential flow through a ninety-

degree bend is considered. This problem does not account for the effects of viscosity, nor 

does it allow three-dimensional behavior. However it provides a test bed for validating 

the concepts of optimization and robust design. With a potential flow assumption, the 

governing equations for fluid flow are reduced to the Laplace equation. A boundary 

element method (Liggett and Lui, 1983) is used for flow solution after discretizing the 

boundary into 76 segments as shown in Fig. 4.3.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3  Ninety-degree bend in potential flow. 
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The objective is to find the shape of the inner wall that minimizes the transverse 

velocity components at the inlet and outlet sections. Hence the objective is to minimize 

the sum of the modulus of the transverse velocity components at the inlet and outlet 

boundaries and is given by 

 min  f , where ∑=
i

i

nd
d

f v
ψ

,  i = inlet and outlet boundary nodes.  

Since a complex optimum geometry is expected, cubic B-spline curves are chosen 

to represent the geometry of the inner wall. A central difference pattern is used in the 

optimization to reduce number of direct solution. The initial step size is 0.05 and the 

minimum step size is 0.01. During the optimization process the number of control points 

is increased as needed in order to handle more complex geometry of the optimum inner 

wall shape. Initial number of control points is five; two are fixed at both ends of the curve 

so there are three control points that have to be adjusted. Both x- and y-coordinates of the 

free control points are free to move but the movement will be constrained in the normal 

direction only in order to reduce number of design variables. This makes the initial 

degrees of freedom to be three instead of six. Figure 4.4 shows the history of 

convergence. An optimum design is obtained at the fifteenth design iteration. The total 

number of direct solutions is 172. The optimum design and some intermediate designs are 

shown in Fig. 4.5. The optimum design was represented with seven control points 

(degrees of freedom = 5). The optimum design has an objective function value of 0.3 

compared to 2.05 of the initial design. In Fig. 4.6, the optimum geometry is compared 

with the result from adjoint method by Cabuk and Modi (1990). A close agreement is 

observed. 
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Figure 4.4 History of convergence in design optimization of ninety-degree bend. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Geometry of ninety-degree bend at different design iterations. 
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Figure 4.6 Comparison between the optimum geometry from this study and from 
Cabuk and Modi (1990). 

 

4.3.2 Plane symmetric diffuser in laminar flow 

The second problem examined was that of determining the shape of a plane 

symmetric diffuser that leads to maximum pressure rise under certain flow, boundary and 

geometric constraints. The flow is assumed to be steady, laminar and incompressible; 

governed by the Navier-Stokes equations.  Note that unlike the problem in section 4.3.1, 

the flow is no longer a potential flow and cannot be treated by a boundary element 

method.  Due to symmetry, only the symmetric half of the diffuser is considered and is 

shown in Fig. 4.7.  The diffuser centerline has symmetry boundary conditions and the 

upper wall is a no-slip wall. A parabolic velocity profile corresponding to a fully 

developed laminar channel flow is specified at the inlet. The geometric constraints are: 

prescribed inlet width H, prescribed diffuser length 3H, constant length inlet and outlet 
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sections of size 0.75H and 6H respectively. The objective is to maximize the pressure rise 

though diffuser. The pressure rise also depends upon the flow rate through the diffuser, 

characterized by the non-dimensional parameter, Reynolds number Re = uiH/ν where ν is 

the kinematics viscosity of the fluid and ui is the average inlet velocity. A non-

dimensional pressure rise is defined by a pressure coefficient Cp given as,   

 2
2
1

i

io
p u

pp
C

ρ
−

= , (4.2)

where po and pi are the area averaged diffuser outlet and inlet pressures and ρ is the fluid 

density.  

  

 

 

 

 

Figure 4.7  Plane symmetric diffuser. 

 

The initial diffuser shape was represented by a Bezier curve with the first control 

point always kept fixed at the inlet and the x-coordinate of the others kept fixed during 

the optimization process. The actual control points were successively increased as 

described in Section 4.2 beginning with 3 points up to a maximum of 6 control points.  A 

laminar fluid flow code, CAFFA by Ferziger and Peric (1996), was modified for use as 

the flow solver. 
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Figure 4.8 shows a typical grid of 55×10 that was used for the computation. The 

CAFFA flow code is a multi-grid flow solver that automatically generates a second finer 

grid of twice the density in each direction, i.e. 110×20 by interpolating the original 55×10 

grid. 

 

 

 

 

Figure 4.8  Typical grid of 55x10.  

 

Because of the inherent inability of any flow solver to accurately predict the 

pressure coefficient with more that two significant figures, the optimization process was 

terminated when the second significant figure in Cp was no longer altered, although three 

significant figures were used in computing the steepest direction. The choice of the initial 

diffuser profile is made in the following fashion. The pressure coefficient for a given 

Reynolds number is computed for a progressively increasing diffuser area ratio AR (exit 

width/inlet width) for straight walled diffusers.  The pressure coefficient achieves a 

maximum at some value of AR during this process.  The straight wall profile 

corresponding to this area ratio AR is assumed to be the initial diffuser profile for a given 

Reynolds number.  The improvement in Cp over the Cp value for a straight walled diffuser 

represents the gain in pressure rise due to shaping of the diffuser with a Bezier curve.   

 

y 
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Diffuser shape optimization using ideas described in Section 4.3 is carried out for 

Re = 50, 100, 200 and 400. The optimized diffuser shapes are shown in Fig. 4.9.  Note 

that only the diffusing portion of the upper wall is shown in Fig. 4.9.  The constant width 

inlet and exit sections are not shown.   

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x/H

0.5

1.0

1.5

y/
H

Re=50

100

200

400

 

Figure 4.9 Optimum plane diffuser profiles with L/H = 3 at Re = 50, 100, 200 and 
400. 

 

The case for Re = 100 is discussed in further detail. A plot of Cp versus AR for all 

the direct solutions is shown in Fig. 4.10 in order to describe the optimization process for 

this particular case. The solid curve represents the straight walled diffusers computed in 

order to select an initial shape.  Each direct solution is shown on the plot as a single 

point. The dotted lines connect the points corresponding to the optimum shapes obtained 

at the end of each iteration. From this figure we observe that the optimum diffuser profile 

at Re=100 has a lower area ratio than the best straight walled diffuser and yet produced a 

larger pressure rise. This is found to be true for all the Reynolds numbers that were 

examined. Figure 4.11 shows convergence history of Cp. The Cp value of the optimum 
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shape is 0.45. Compared to the Cp of 0.41 of the initial shape there is a 10% 

improvement.  

 

The optimum shape obtained in the present study is compared in Fig. 4.12 to the 

results of Cabuk and Modi (1992) obtained using an adjoint variable method derived 

using ideas of Pironneau (1974). The close agreement in diffuser profiles obtained with 

these two different optimization techniques and two different flow solvers lends a degree 

of confidence to the present computations. 
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Figure 4.10 Pressure coefficient vs. area ratio for plane symmetric diffusers with 
L/H = 3 at Re = 100. 
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Figure 4.11 History of convergence in design optimization of plane symmetric 
laminar flow diffuser for the Reynolds number of 100. 
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Figure 4.12 Optimum plane diffuser profiles with L/H = 3 at Re = 100. The dashed 
line is the result from Cabuk and Modi (1992) for a grid of 31x11 and 
the solid line is the present result. 
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4.3.3 Axisymmetric diffuser in laminar flow 

The problem of optimizing axisymmetric diffusers for laminar flow is addressed 

next. The diffuser configuration, flow assumptions, boundary conditions and the 

geometry constraints are identical to those considered in section 4.3.2 except that now 

axisymmetric diffusers with inlet diameter D (replacing inlet width H) are used instead of 

plane diffusers.  Once again optimum diffusers for laminar flow Reynolds numbers of 50, 

100, 200 and 400 are computed. The final results of the optimization process are shown 

in the Fig. 4.13. Figure 4.14 shows the convergence of Cp during the optimization process 

for the case of Re=100, 15% improvement in Cp value is observed for the optimum 

design. 
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Figure 4.13 Optimum axisymmetric diffuser profiles with L/D = 3 at Re = 50, 100, 
200 and 400. 
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Figure 4.14 The progression of the pressure coefficient with each direct solution 
during the optimization process of axisymmetric diffusers with L/D = 
3 at Re = 100.   

 

 
4.3.4 Torque Arm under static load 

A problem first introduced by Botkin (1982) where the objective is to minimize 

the weight w  of a torque arm subjected to axial and transverse loads is considered next. 

Ultimate stress of the material used is MPau 972=σ . With a safety factor of 2.1 , the 

design maximum stress is set to be MPad 810=σ . The overall geometry is shown in 

Fig. 4.15. The shape of the straight boundary between the two holes is to be optimized. A 

stress constraint is handled by a discrete penalty function; the objective function is 

described in Eq. 4.3.  
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The thickness of the arm is assumed to be 3 mm; radii of the small and the large holes are 

taken to be 20 mm and 40 mm respectively. A geometric constraint that the torque arm be 

symmetric about the x-axis is imposed. A finite element code (linear quadrilateral 

element) by Betti (1997) is used to solve for the maximum element stress in the 282 

elements. The typical mesh for finite element solutions is shown in Fig. 4.16. 

 

 

 

 

 

Figure 4.15 Torque arm under static loads. 
 

 

 

Figure 4.16 Typical quadrilateral mesh. 

 

The shape of the boundary is initially represented by a cubic B-spline curve with 

five control points (both ends are fixed). The number of control points is increased as 
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required to handle more complex geometry. Design variables are the y-coordinates of the 

free control points. The optimization process is carried out using two-level DOE. Figures 

4.17a and b show a history of convergence of weight and maximum stress respectively. 

The optimum design and some intermediate designs are shown in Fig. 4.18. The optimum 

design is obtained with a six-control point curve. Ninety-two direct solutions were made. 

The optimum weight is 67% of the initial weight. In Fig. 4.19, the result is compared 

with the optimum design obtained by Richards (1995) using genetic algorithm. A close 

agreement is observed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17a History of convergence of the weight of the torque arm. 
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Figure 4.17b History of convergence of maximum stress in the torque arm. 
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Figure 4.18 Evolution of torque arms geometry. 
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Figure 4.19 Comparison between the torque arm geometry from this study (solid 
line) and from Richards (1995) (dashed line). 

 
 

 

4.4 Discussion 

For the potential flow problem of section 4.3.1 we verified that the algorithm was 

able to achieve the considerably complex optimum shape by a few control points. In 

section 4.3.2 and 4.3.3 we applied the algorithm to two laminar diffuser problems and the 

results were also encouraging. Significant improvement in Cp's for both plane and 

axisymmetric cases is achieved for all the Reynolds numbers in the study.  

 

Consider the result of the optimization process for the plane symmetric diffuser at 

Re = 100, the maximum Cp obtained from computations is 0.452.  Since we expect no 

more than a two significant figure accuracy from the solver, CAFFA, we consider the 

maximum to be Cp = 0.45 and the intermediate results with Cp > 0.445 obtained during 

the optimization process to correspond to optimum profiles.  With this in mind, the 

optimum region lies above Cp = 0.445 as shown in Fig. 4.10. This implies that there is a 

family of profiles obtained from the optimization process that can be considered 

optimum.  These profiles are shown in Fig. 4.20 corresponding to the points in the 

optimum region of Fig. 4.21. 
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Figure 4.20   Family of optimum plane diffuser profiles with L/H = 3 and Re = 100.  
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Figure 4.21 The progression of pressure coefficient with each direct solution 
during the optimization process of plane diffusers with L/H = 3 at Re 
= 100. The dashed line represents the lower bound of the optimum 
region. 

 
 

In design of minimum weight torque arm, we observe from the stress distribution 

plot (Fig. 4.22a and b) that the areas around the centerlines of the torque arms have 

minimal stress levels while the areas along the boundaries have maximum stress levels, 
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which are consistent with the beam theory. It may be more preferable in some cases to 

have the torque arm configured with a slot in the middle (see Fig. 4.23) as investigated by 

Botkin (1986), Zhang and Belegundu (1992) and Wang and Grandhi (1996). In fact a 

solid-empty approaches (Bendsoe, 1989) should also lead to the optimum solution that 

has no material in the centerline area. No matter which configuration is used, the 

optimum torque arm is still subjected to the peak stress close to the constraint value at the 

boundary as shown in Fig. 4.21. Under this stress condition, any tolerance in the shape 

may lead to failure. By this reason, we suspect that the optimum torque arm may not be 

robust. This issue of robustness will be discussed in the next chapter. 

 

 

 

 

 

 

 

Figure 4.22a  Stress distribution in the initial torque arm. 
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Figure 4.22b  Stress distribution in the optimum torque arm. 

 

 

 

 

 
 
 

 

Figure 4.23  Torque arm with slot design.  
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Chapter 5 

Robustness Analysis of Freeform Mechanical Parts 

 

Engineers refer to the stability of designs as the robustness of designs. Simply 

stated, a robust design is one that delivers roughly the same performance in the presence 

of inevitable variations in the manufactured instances of a product as well as in its 

operating conditions. A mathematical abstraction of the notion of robustness is shown in 

Fig. 5.1. A point p in the space P of product and environmental parameters maps to a 

point f in the space F of performance indicators. Assuming some mild smoothness of this 

mapping function, a neighborhood NP(p) maps to a neighborhood NF(f). The 

neighborhoods are shown as shaded regions in Fig. 5.1. A robust design is a point p in P 

whose finite neighborhood NP(p) maps to a “small” neighborhood NF(f). In contrast, an 

optimum design is a point p in P whose mapping f in F achieves the maximum of the 

desired performance over F. 

 

Designers seek optimum designs that are also robust. If this is not achievable, 

then sub-optimal designs that exhibit robustness may be acceptable. But any design, 

optimal or otherwise, that is not robust is not an acceptable engineering solution. This 
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opens up several interesting questions. What is the measure of smallness of the 

neighborhood NF(f)? How can one explore the neighborhood of points in P? We propose 

to answer these questions in this chapter and test them on several examples. We make no 

special assumptions about the mapping function except that we have at our disposal a 

function evaluator that, given a point p in P, evaluates a point f in F. We use computer 

simulation to perform this evaluation. We then sample several discrete points in P and 

probe the neighborhood of each point for robustness. 

 

 

 

 

 

Figure 5.1 A mapping for a mathematical abstraction of robustness in design. 

 

Researchers have adopted a variety of approaches in the area of computational 

shape optimization of mechanical parts. These include black-box optimization of the 

previous chapter, adjoint operator or optimal control based methods (Pironneu, 1974, 

1984, Cabuk and Modi, 1992) and genetic algorithms (Richards, 1995). With modeling 

approximation and limited solver accuracy, optimum shapes obtained using 

computational shape optimization can only be approximate. Moreover, in practice the 

mechanical parts may be subjected to uncontrollable factors (or noise) such as finite 

manufacturing tolerances and variations in operating conditions. In order that a chosen 

design remains close to optimal during practical use, the design must be relatively 
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insensitive to noise. A design that meets these qualifications will be referred to as a 

robust design. 

 

Phadke (1989) suggests one way to classify noise by its source as internal noise, 

external noise and deterioration. Unit-to-unit variation due to manufacturing 

imperfections such as dimensional tolerances or variations in material properties is 

internal noise. External noise consists of changes in operating conditions such as 

temperature, humidity etc. Deterioration refers to changes of the parts from theirs original 

state in time due to aging and wear. In this study, the source of noise is not of concern 

and hence deterioration will be considered as part of internal noise.  

 

To achieve robustness and optimality at the same time may not always be possible 

in most cases and a compromise must be made. Following Taguchi (1986), the quantity 

signal-to-noise ratio (SNR) is used in robustization. It characterizes the ratio of mean 

performance to variance of performance under the presence of noise. The larger SNR 

usually leads to the more robust design, however there are some cases where this is not 

true. An example of a problem one can encounter in using SNR can be found in Wilde 

(1991). 

 
 

Other than the use of SNR, Cagan and Williams (1993) propose a method based 

on an extension of the Lagrangian and KKT conditions of optimality to take into account 

the measurement of flatness and curvature of the objective function. The method requires 

the use of second order derivatives and finally human judgement may be required. There 
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are several other techniques for robust design such as worst case analysis, corner space 

evaluation, etc. A recent article by Chen and Du (1999) provides a comparison of some 

of these methods.  

 

In this chapter, a method for robustness analysis is presented based on the black-

box approach carried on from the previous chapter.  We analyze the effect of noise on the 

design by using SNR together with the simple statistical method of finding mean, 

standard deviation and probability of failure. The methods are presented in the next 

section followed by their applications to the example problems from the previous chapter. 

 

5.1 Methodology for robustness testing 

Most applications of robust design techniques have been to problems with 

analytical solutions permitting inexpensive computation. In the present study, we focus 

on the design of freeform shapes, which involve many design variables and where no 

prior analytical solution to the relationship between performance and shape is available. 

Moreover methods such as worst case analysis may not be appropriate in our 

applications since the worst case noise factors are not necessarily the extreme values of 

the specifications. And due to a large number of design variables and time consuming yet 

inaccurate iterative direct solution, we cannot afford to use SNR as objectives of the 

designs or the use of Lagrangian based methods. Our approach to the problem is to first 

perform a numerical shape optimization process to maximize (or minimize) the 

performance (the process is described in Chapters 3 and 4). Then check for robustness of 

each iterative design.  The approach is shown in Fig. 5.2a and b. Figure 5.2a shows the 
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shape optimization process and Fig. 5.2b shows the robustness analysis process 

performing on the iterative designs obtained from the optimization process. 

 

 

 

 

 

 

 

 

Figure 5.2 (a) Search pattern in the design space P for optimum design, (b) 
Applying noise to critical points. 

 

The procedure for robustness analysis starts with the generation of neighborhood 

samples to simulate the effect of noise on each iterative design. Next the objective 

function of each sample is evaluated. From the samples we compute the values of SNR, 

mean, standard deviation and probability of failure. The computation of these values and 

the techniques to generate noise are described next. Subsequently this information can be 

utilized to identify robust designs. 
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5.1.1 Noise in freeform geometry 

Noise in a freeform geometry can be viewed as changes of shape within a 

tolerance zone of the size ±d as shown in Fig. 5.3a. There are infinite numbers of free 

form shapes in the zone. In our optimization algorithm, the shapes are represented by 

either Bezier or B-spline curves. The number of control points that define the curve is 

progressively increased during the optimization process until no further improvement in 

objective function is achieved. As a result, a design from each successive iteration may 

be represented with a different number of control points. Since the control points are 

treated as design variables subject to noise and since the number of neighbors for each 

design point are given by 2n factorial (for n free control points), the number of neighbors 

will be different at each design iteration. The varying number of neighbors make it 

difficult to compare SNR, standard deviations and means obtained at design iterations. 

Moreover, in practice, noise in free-form shape mechanical parts does not originate at the 

designed control points but in the parts themselves. 

 

To address this problem, once the optimization process is terminated, the control 

points themselves are discarded and only the shapes obtained from design iterations are 

considered. Noise on each shape is generated by applying the changes directly to the 

shape. We impose new quadratic B-spline curves on the shape as noise. Figures 5.3b and 

c show different shapes obtained by imposing different quadratic B-spline curves over 

the designed shape. With this approach we can control the number of neighbor samples 

by controlling the number of the B-spline control points. With the same number of 

samples, the SNR from different design iterations are comparable. As more control points 
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are used, more shape variations within the tolerance zone are obtained, leading to a better 

estimate of robustness.  

 

        

(a)     (b) 

 

 

(c) 

 

Figure 5.3 Simulation of noise in freeform shape. (a) A designed shape and its 
tolerance zone, (b) A 4-control point quadratic B-spline curve 
overlapping the designed shape, (c) A 5-control point quadratic B-
spline curve overlapping the designed shape. 

 

 

-d 
+d 



 

 
 

68

5.1.2 Signal-to-noise ratios 

Taguchi (1986) derives signal-to-noise ratios (SNR) from quality loss function.  

Three formulations of SNR for different objectives are shown in Eq. (5.1) to (5.3). 
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where if  (i = 1,2,3,…, m) is the performance of neighboring samples around the design 

point and represents the effects of noise.  Moreover the mean performance f  and 

variance 2s are: 
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where SD  is a standard deviation. 

 

 From Eq. 5.1 to 5.3, we can observe that SNR are formed by basic arithmetic 

operations of mean and standard deviation. It is seen in Eq. 5.3 that SNRN is the 

logarithmic function of the mean to standard deviation ratio. For SNRS, we can show that 

it is the logarithmic function of the addition of square of mean and square of standard 

deviation in the form of   
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( )2210)( SDfLogfSNRS +−= . (5.1a)

Here, since the number of neighboring samples m is large, m – 1 ≈ m, so  
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Note that the formula for SNRL in Eq. 5.2 can be considered as SNRS (1/f ). 

 

To compute SNR, noise is applied to the design point.  The performance of each 

of the m neighbors (due to noise) is evaluated.  Note that the following quantities are 

known as part of design specifications: target range of performance, range of operating 

conditions (external noise) and allowable tolerances (internal noise). In practice, noise 

occurs in unpredictable patterns, so there is no obvious way to simulate noise. On way to 

generate noise is simply use a random number generator. An alternate way is to produce 

systematic patterns using full or partial factorial DOE. Figure 5.4 shows the four 

neighbors of a design point obtained by applying 22 combinations of two noise factors.  
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Figure 5.4 Four neighboring samples (open circles) obtained by applying 22 
combinations of two noise factors to a design point (solid circle) are 
shown. 

 

From Eq. (5.1) to (5.3), a larger SNR should lead to a design that is robust as well 

as close to the optimum; so a process that maximizes SNR would be a good means to 

achieve a compromise (the design process that leads to the compromise of robustness and 

optimality is sometime called “robustizaion”). However, there are some disadvantages in 

the use of SNR. First, it requires numerous direct solutions in order to simulate the effect 

of noise. If we use a design of experiment method to robustize a design with n1 design 

variables and consider n2 noise factors, we must construct crossed arrays (Myers and 

Montogomery, 1995). Figure 5.5 shows a crossed array with n1 = 2 and n2 = 3. The filled 

circles represent the inner array of design variables used to estimate derivative 

information (of SNR with respect to the design variables). The empty circles refer to the 

outer arrays that take into account the effect of noise to compute SNR for each point of 

the inner array. A total of 2
n1
× (2

n2
+1) = 36 direct solutions are needed for one design 

iteration.  Another disadvantage is an aliasing problem, since mean and variance are 
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confounded in SNR. For example, to maximize the performance, a design with high mean 

and high variance can have the same SNR as another design with low mean and low 

variance. In such cases, constraints on mean, variance and range of performance have to 

be imposed in the optimization process to determine a feasible region.  

 

 

 

 

 

 

Figure 5.5 Crossed arrays for robustization. 

 

5.1.3 Probability of failure 

With the mean and variance that are computed at the same time as SNR, one can 

use the Normal distribution function 
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where f is objective function, f  is the mean and SD is the standard deviation, to 

determine the probability of failure (POF) by integrating the function G( f ) over the 

range of f that is out of specification. 
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5.2 Example problems 

5.2.1 Ninety-degree bend in potential flow 

For the purpose of examining robustness internal noise is generated within a 

shape tolerance of 01.0± using seven-control point quardratic B-spline error curves (both 

ends fixed). There is no external noise introduced in this case. Thirty-two samples in a 

two-level DOE pattern are used per design.  At each design iteration, the signal-to-noise 

ratio, SNRS and the standard deviation SD is obtained using Eq. (5.1) and (5.5).  

Probability of failure is computed based on a normal distribution. The failure criteria is 

when f  > 0.6. The means, SD, SNRS and POF are shown in Fig. 5.6. The figure shows 

that the optimum design has highest SNRS, highest mean, lowest SD and lowest POF, 

which imply that the design is also robust. 

 

5.2.2 Plane symmetric diffuser in laminar flow 

Internal noise is generated within a tolerance of H05.0±  by five-control point 

quadratic B-spline error curve. External noise is generated by changing the operating 

inflow Reynolds number of 100 by %20± . With two-level designed experiment noise 

sampling, total number of samples per design is thirty-two. A worst case minimum value 

of Cp = 0.42 is specified as a requirement for the design. Probability of failure is 

computed based on this criterion. After evaluating Cp for all the samples, a robustness 

measurement is obtained in the form of mean and standard deviation of the objective 

function, SNRL and POF as shown in Fig. 5.7. With all the information, the optimum 
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design is found to be robust as indicated by a high SNRL, low standard deviation and low 

POF. 

 

5.2.3 Axisymmetric diffuser in laminar flow 

The same process as in 5.2.2 is applied. The result of the analysis is shown in Fig. 

5.8. Again, the optimum diffuser is found to be robust. 

 

5.2.4 Torque arm under static load 

For the purpose of robustness analysis, internal noise within the shape tolerance 

of 5± mm is applied in the form of quadratic B-spline error curves with 7 control points 

(fixed both ends) using two-level DOE pattern. This makes the number of samples to 

simulate noise 32 per design. Figure 5.9 shows the convergence history of weight, means, 

SD, SNRN and POF, all with respect to maximum element stress.   

 

Design c may be chosen as a compromise between robust design (design a) and 

optimum design (design h). Because design c has a much lower standard deviation and a 

volume of 83% of the initial design (compared to the minimum volume of 67% of the 

initial design of design h), but have almost zero POF compare to design h, which has 

62% POF.  
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Figure 5.6 Robustness analysis for the design of ninety-degree bend. 
 
 
 

M
ea

n 
an

d 
va

ria
tio

ns
 o

f f
 

SD
 o

f f
 

SN
R S

 
PO

F 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-20

-10

0

10

20

0 2 4 6 8 10 12 14 16
Design iteration

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

a       b      c      d      e       f       g      h       i       j      k       l       m     n     o 

Designs 



 

 
 

75

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7 Robustness analysis of plane symmetric flow diffusers for Reynolds 
number of 100. 
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Figure 5.8 Robustness analysis of axisymmetric flow diffusers for Reynolds 
number of 100. 
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Figure 5.9  Robustness analysis for design of torque arms. 
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5.3 Discussion 

The robustness analysis of the first three examples refered to objective functions 

that were obtained from integration (sum of nodal transverse velocity in the first example 

and area averaged pressure in the second). In the last example, robustness is based on a 

stress constraint, which is the local maximum element stress. By nature, the values from 

integration are usually less sensitive to noise than the local point values.  The physical 

nature of each problem also plays a role in robustness of the optimum results. For 

example, performance of the optimum diffuser seemed to be not very sensitive to internal 

noise (shape changes) since for the optimum design, minor changes in shape do not cause 

much change to the whole flow field so the pressure rise does not change much.  In 

contrary, for the torque arm problem, minor change of shape at some location can cause a 

large change in local stress concentration; hence the optimum torque arm is more 

sensitive to internal noise.  

 

 As mentioned in Chapter 1, our approach to robust-optimum design problems is 

to find optimum designs in term of objective function with robustness as a constraint. 

However, when we put the idea to work the robustness constraint is imposed after the 

optimization processes are completed in order to reduce number of direct solutions that 

may require if robustness analysis is perform during optimization process.  

 

In all the examples we find that the designs with higher SNR or lower POF also 

have lower standard deviations and better mean (higher for maximization problems; 

lower for minimization problems), so we may use either SNR or POF as a scalar to 
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quantify robustness. From the examples, we can see that SNR is a relative quantity. It can 

indicate that one design is more or less robust than the other but it cannot provide an 

absolute measure such that one can say, for example, that SNR > 40 implies a robust 

design. POF, on the other hand, provides an absolute statistical measure, but to estimate 

it more closely a suitable distribution function should be chosen according to the 

histogram plot (in all the examples, we assume a normal distribution). Figure 5.10 shows 

an example of a histogram plot of the stress in torque arm designs subjected to noise. It 

shows that the initial design follows the normal distribution but other designs seem to 

have non-symmetric distributions (leaning toward the worse side). This indicates that the 

POF for the optimum design in this case is under-predicted. 
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Figure 5.10 Weight vs. probability of failure of torque arms. 
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To check for the convergence of the robustness analysis results, we carry out the 

robustness analysis of the torque arm problem using different number of neighboring 

samples. The result in Fig. 5.11 shows that the current number of samples (32 samples 

per design) is sufficient to identify trends for comparative purposes. 
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Figure 5.11 Convergence study of the robustness analysis of the torque arm 
problem. 

 

 In the torque arm problem, if we examine the problem as a multicriteria problem 

with the weight and probability of failure as the objectives then we can create a plot as 
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iteration (designs c thru h) can be a solution, depending upon how much probability of 

failure or weight is allowed. This kind of problem will be discussed in the next chapter. 
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Figure 5.12 Weight vs. probability of failure. 



 

 

Chapter 6  

 

Design of Corrugated Panel Structures 

 

In the previous chapters we have explored optimum and robust geometric design 

of free-form mechanical parts and used four academic examples to demonstrate the 

design process, each with a single objective. In this chapter we explore a different class 

of geometric design, fixed-form geometric design. This class of design problems occurs 

in many practical situations. Moreover, engineers also encounter the need to design parts 

that satisfy multiple objective functions. These so-called multicriteria design problems 

will also be explored in this chapter through the design of corrugated panel structures.   

 

The strength of a plate is frequently enhanced by adding stiffening elements. The 

addition of these elements is a preferred mean of reducing cost and weight rather than 

simply using a thicker plate.  Many studies have addressed the problem of design of 

stiffeners for a variety of applications. Bendsoe (1989) and Luo and Gea (1998) set up an 

optimum stiffener design problem as a material distribution problem. In the later study 

using theory of composite materials, they model an increase in an effective Young’s 

modulus with an addition of stiffening material. With the assumption of an effective 
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Young’s modulus, optimization problems were set up to distribute and orient a fixed 

amount of stiffening material in order to create a plate and shell structure that maximizes 

the first few modes of natural frequencies or minimize the mean compliance under static 

loads. This approach in general leads to an optimum stiffener design of arbitrary shape, 

which may be acceptable for applications such as fiber glass reinforced structures but 

may be unsuitable in sheet metal or concrete applications due to manufacturing or cost 

reasons.  Figure 6.1a shows an exploded view of a plate structure that uses a freeform 

sheet metal stiffener. 

       
 

(a) With free form stiffener     (b) With corrugated stiffener 
 
 

Figure 6.1 Panel structures. 

 

A simpler kind of stiffener, such as a corrugated stiffener (or so-called corrugated 

cladding when used by itself without the flat panel) shown in Fig. 6.1b, is easier to form 

and assemble leading to lower cost. Although the best strength to weight ratio cannot be 

guaranteed, decent performances can be achieved with proper design. Faupel and Fisher 

(1981) provide experimental data on stiffness of fifteen different plate stiffener 

configurations, which have rather simple geometry such as angles, corrugated plate, 
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channels, honeycomb and ribs.  The comparison under static loading indicates that the 

corrugated stiffener is among the stiffest structures. 

 

 The following studies focus on the design of corrugated claddings. They set up 

the shape optimization problems to find the optimum profiles of the corrugated claddings 

for specific objectives under specific operating conditions and constraints.  Seaburg and 

Salmon (1971) try to minimize the weight of a corrugated cladding while satisfying a 

stress constraint. In Lee, et.al. (1995), the objective is to minimize the bending stress 

while satisfying some imposed dimensional constraints and this study also investigates 

corrugated panel structures. The design of corrugated panels to minimize cost and weight 

with several failure criteria as constraints was explored by Rahman (1996).  All those 

studies provide methodologies for optimum shape design under specific objectives and 

constraints. However, they do not provide fundamental design guidelines or rules such as 

optimum thickness of the material, optimum pitch and optimum height. The objective of 

this chapter is to find such rules. 

 

Finding an optimum corrugated stiffener design is not trivial. Without a constraint 

on weight or an objective function e.g. natural frequency, maximum deflection etc., the 

design problem is considered multicriteria. The example shown in Fig. 6.2 is based on the 

maximization of natural frequency and minimization of weight. From numerical 

experiments, the relationship between natural frequency and weight of the structure does 

not exhibit a clear maximum but there exists a boundary formed by extreme designs 

(optimum designs and worst designs). Each solid point in Fig. 6.2 represents one design 

with each open point being the optimum design in its own weight class shown as vertical 
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bars. For this kind of problem the goal is to find a set of optimum designs that are a 

compromise between different objectives. This set of designs is the so-called Pareto 

solutions (Pareto, 1906). Pareto solutions can be obtained by collecting the designs that 

lie on a part of boundary of the objective function space shown as thick line in Fig. 6.2. 

In order to find the boundary, the design space has to be explored or to be filled with trial 

designs and if the there are large number of trial designs then the part of the boundary of 

those designs (design 1 to 5 in Fig. 6.2) will converge to the Pareto solutions.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Pareto solutions. Objectives include maximizing natural frequency 
and minimizing weight. 

 
 

Genetic algorithms have been used intensively in multicriteria optimization but 

usually do not address the robustness issue.  In this study an exhaustive search is used to 

generate trial designs, this may seem like the PSI method (Statnikov and Matusov, 1995) 

but the purpose is not only to find an optimum design but also to fill the design space 

with a variety of designs during the search so that the information can be used later to 

determine the robustness of the designs.  
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Section 6.1 discusses the theoretical formulation for deflection, stress and natural 

frequency of plate structures. It also describes how similarity can be used to identify non-

dimensional parameters. Maximization of natural frequency and minimization of 

maximum deflection are the two objectives that we consider. We do not use maximum 

stress as an additional objective function because we cannot obtain an accurate stress 

solution from the solver using our current finite element models (see Appendix B.4 for 

convergence test of the solver). The solution process consists of two stages. The first 

stage is data generation, in which the design variables are set-up and trial designs are 

generated by varying those design variables. A finite element model is constructed for 

each design and numerical experiments are performed to obtain the values of the two 

objective functions. This stage is presented in Section 6.2. The second stage is data 

analysis. In this stage robustness analysis is performed to obtain SNR of both objective 

functions. Those SNR together with the two objective functions are taken to be the four 

design objectives. Upon observation of the objective function space, criteria are set up 

and a feasible solution set is selected. The robust-optimum solutions are obtained by 

comparing the solutions obtained by using min-max method with the solutions obtained 

using single-objectives. Finally we compile all the information and come up with the 

design rules. The second stage is presented in Section 6.3. A discussion is presented in 

Section 6.4. 
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6.1  Theoretical background  

Before we discuss corrugated panel structures, let us first consider a simple plate 

as shown in Fig. 6.3. A square plate of width a and thickness t, simply supported along 

all the four edges is subjected to a uniformly distributed load of intensity q. The material 

is assumed to be isotropic. According to Timoshenko (1940), the governing equation for 

the deflection u  is a biharmonic equation.  

 

 

 

 

 

 

Figure 6.3 Plate with simply supports. 
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where E is the Young's modulus, ν is the Poisson's ratio of the material and I is the 
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One can solve Eq. 6.1 and obtain umax, the maximum deflection at the center of 

the plate and σmax, the maximum bending stress located at mid-point of each edges to be  

D
qau

4

max 00406.0= , (6.2)

2

2

max 287.0
t
aq=σ . (6.3)

Dynamic behavior is described by the governing equation 
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From the solution for harmonic motion (Rao, 1999), the first mode natural frequency, ω , 

can be obtained as 

)1(
907.0 22 νρ

ω
−

=
E

a
t      Hz (6.5)

 

Now consider a case where a corrugated stiffener is attached to the bottom of the 

square plate to form a strong plate structure. In sheet metal applications, the two parts are 

usually held together by spot welding. If the parts are too thick for spot welding then slots 

are cut into one of the part in order to create welding area. Modeling of the welded joint 

is a complicated process. We avoid this complication by assuming that a sufficient 

number of welded joints are made so that the structure can be treated a single 

homogeneous part of different thickness as shown in Fig. 6.4. From a static point of view, 

the structure behaves as a stiffer plate of orthotropic nature, i.e. stiffer in one direction 

than the other. Then the governing equation for static deflection becomes the Huber 

equation. 
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Figure 6.4  Simplified model of a corrugated panel structure (cross-sectional view). 

 

Troitsky (1967) gives stiffness values Dx, Dy and Dxy for box-type bridge 

structures that can be applied to the plate structure in Fig. 6.4(b). These are 
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(6.7) 

In the above, Iyy is the moment of inertia about the y-axis, which is approximated as 

12)2( 3ta ; IB is moment of inertia of the cross section in Fig. 6.4(c) around the neural 

axis; G is the shear modulus. AR is the area enclosed inside the corrugated fold;  si is the 

perimeter of the enclosing wall and ti is the corresponding thickness. For an isotropic 
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material the shear modulus is a linear function of the Young’s modulus and is given by 

)1(2 ν+= EG . Note that all the moment of inertia terms are functions of geometry. Now 

we scale all the length scales with the plate width a and obtain non-dimensional 

geometric parameters as 

 

non-dimensional plate thickness  T  =  t/a, 

non-dimensional height of corrugation H  =  h/a, 

and non-dimensional pitch of corrugation  P  =  p/a, 

  

The Huber equation can be written in non-dimensional form as  
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where 

qa
EuU =  (6.9)

and yxyx ggg ,, are function of geometry which are invariant as long as the similarity of 

geometry are kept. 

 

Similarity of Eq. 6.8 will be maintained as long as Poisson’s ratio ν is invariant.  

The solution of the Huber equation can be written in the form of Fourier series but the 

way to compute coefficients in the series is complicated and will not be discussed in this 

thesis. The expressions for maximum deflection, maximum bending moment and natural 

frequency are expected to be close to the Eq. 6.2, 6.3 and 6.5 respectively. With this 

assumption we scale the rest of the solutions as follows.     
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Non-dimensional stress,   qS /σ=  (6.10)

Non-dimensional frequency,   ρωΩ Ea=  (6.11)

Lastly, let w be the weight of the structure, the non-dimensional weight can be written as,  

3awW ρ=  (6.12)

 

These expressions are numerically proven to be true and are shown in Table 6.1 in 

Section 6.3. With this non-dimensionalization and assuming a Poisson’s ratio of 0.29 

(close approximation for steel and most alloys), the solutions for maximum deflection, 

maximum stress and natural frequency of a flat plate (Eq. 6.2, 6.3 and 6.5 respectively) 

can be written in non-dimensional forms as the following. 

3max
0446.0
W

U =  (6.13)

2max
287.0

W
S =  (6.14)

W948.0=Ω  (6.15)

 

6.2 Data generation 

Several variables are needed to configure the corrugated stiffener, These are; 

height (H), thickness (T), pitch (P) and shape of the corrugation. Note that, in this study, 

the thickness of the corrugated stiffener is set to be the same as the plate thickness. For 

computational purposes, shape of corrugation will be represented by a parameter Γ. With 

these four parameters the weight W and the objective functions natural frequency Ω and 

maximum deflection Umax become: 
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Weight,    W  = W(T, Γ, P, H) 

Natural frequency,   Ω    =  Ω(T, Γ, P, H) 

Maximum deflection,   Umax =  U(T, Γ, P, H) 

 

Three basic shapes of corrugation are considered, which are rectangle (Γ = 1), 

trapezoid (0 < Γ < 1), and triangle (Γ = 0). The three shapes are constrained by height and 

pitch as shown in Fig. 6.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Shapes of the corrugations. 
 

 

A finite element solver I-DEAS for linear statics and response dynamics is used to 

solve for deflections and natural frequencies of the designed structures. With the 

capability of I-DEAS to run in a batch mode, we can set up an automated process to run 

all the experiments without user intervention (see Appendix C for detail on batch mode 

programming). But before setting up the experiments, proper modeling assumptions have 

to be made. Moreover the similarity derived in the previous section has to be validated. 

The next sections discuss these issues, followed by a section describing the data 

generation method. 
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6.2.1 Modeling assumptions  

The following assumptions are made to simplify the computation; 

(a) Body force is neglected since the stress generated by the weight of the structure is 

negligible compared to that due to load. 

(b) Radius of bending is neglected. 

(c) We assume that there are sufficient joints between the plate and the stiffener to 

treat the assembled structure as one homogeneous piece (see Fig. 6.4c) 

 

For computational efficiency linear quadrilateral thin shell elements are used 

instead of solid elements. From a convergence study (see Appendix B.4), element size of 

about 5% of the plate width is found to provide an accuracy of about 10% for natural 

frequency and 15% for maximum deflection. However the stress solution is not grid 

converged hence we will not use the stress solution. The level of accuracy of natural 

frequency and maximum deflection is sufficient to provide comparisons between 

different designs. Figure 6.6 shows typical grids that are used through out this study.   

 

 

Figure 6.6 Typical quadrilateral grids. 
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6.2.2 Validation of similarity 

In order to validate the similarity derived in Section 6.1 we carry on a set of six 

numerical experiments to find natural frequency, maximum deflection and maximum 

stress in corrugated panel structures with simply supports and under uniformly distributed 

loads.  In the first experiment material properties are E1 = 207 Gpa, ρ1 = 7820 kg/m3 and 

ν = 0.29. The shape of corrugation is a rectangle and the structure has the following 

dimensions: a1 = 0.1 m, h1 = 0.01 m, p1 = 0.03 m and t1 = 0.0005 m. This structure has a 

weight of W = 0.013. Load intensity is q1 = 10,000 N/m2. In five other experiments, these 

parameters (E, ρ, q, a) are altered while relative geometry is kept invariant. The results 

from the six experiments (shown in Table 6.1) show that the non-dimensional solutions 

are the same in all experiments and thus the derived similarity is valid. The first mode 

shape of the natural frequency for the first run is shown in Fig. 6.7. A stress distribution 

and deflection plot is shown in Fig. 6.8.  

 

     

 

Figure 6.7  First mode shape from two view angles. 
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Figure 6.8 Stress distribution and deflection from two view angles. Dark areas 
represent high stress. 

 

 

Table 6.1 Validation of similarity. 

 
Properties Results 

Non-dimensional 

results 

 

Ex
pe

rim
en

t N
o.

 

E ρ q a 
ω 

 (Hz) 

u 

(mm.) 

σmax 

(Mpa) 
Ω Umax Smax 

 1 E1 ρ1 Q1 a1 2680 0.0033 8.3 0.052 674 828

 2 2E1 ρ1 Q1 a1 3790 0.0016 8.3 0.052 674 828

 3 E1 2ρ1 Q1 a1 1900 0.0033 8.3 0.052 674 828

 4 E1 ρ1 2q1 a1 2680 0.0065 16.5 0.052 674 828

 5 E1 ρ1 Q1 2a1 2680 0.0065 8.3 0.052 674 828

 6 2E1 3ρ1 4q1 5a1 2190 0.033 33.1 0.052 674 828
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6.2.3 Trial design generation 

A set of trial designs is generated from combinations of the four design variables 

in the following ranges: 

 Thickness, 0.0005 ≤ T ≤ 0.01  

 Pitch 0.025 ≤ P ≤ 0.5  

 Height 0.02 ≤ H ≤ 0.2  

 Shape 0.0 ≤ Γ ≤ 1.0  

 

The weight is in the range of 0.002 ≤ W ≤ 0.02.  

 

Twenty five hundred trial designs are generated from the pre-determined discrete 

combinations of the following values: 

Thickness,  T =  (0.0005, 0.001, 0.0012, 0.0015, 0.0018, 0.0002, 0.0022, 0.0025,  

0.0028, 0.0003, 0.0035, 0.004, 0.0045, 0.005, 0.006, 0.007, 0.008, 

0.009, 0.010) 

Pitch,   P =  (0.025, 0.04, 0.05, 0.054, 0.06, 0.07, 0.08, 0.1, 0.11, 0.12, 0.13,  

0.15, 0.18, 0.22, 0.29, 0.4, 0.5) 

Height,  H =  (0.02, 0.025, 0.05, 0.075, 0.1, 0.125, 0.12, 0.175, 0.2) 

Shape,  Γ =  (0, 0.5, 1) 

 

Not all combinations of the above values are selected, the trial designs are 

constrained by the weight range and some unreasonable configurations are eliminated 

(for example too high and too thin).  Note that these trial designs are not generated all at 
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once but rather in a progressive manner, i.e. one thousand designs are generated in the 

beginning and the numerical experiments are carried on, then we observe the design and 

objective function spaces to determine the regions that need additional exploration and 

generate more trial designs to fill those regions. 

 

Two thousand additional trial designs are randomly generated to be uniformly 

distributed along the weight. This is done by using a random number generator to 

generate values of design variables in the ranges given above. The weight of each design 

is computed. The weight range is divided into twenty equal intervals and we make sure 

that there are equal number of designs in every weight interval, i.e. each interval has one 

hundred designs. 

 

Figures 6.9a to d show the distribution of thickness, pitch, height and shape of the 

4,500 trial designs with weight. The open points are the randomly generated designs and 

the solid points are the pre-determined designs. 
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Figure 6.9a Distribution of  the thickness of the trial designs with weight. 

 

 

Figure 6.9b Distribution of the pitch of the trial designs with weight. 
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Figure 6.9c Distribution of the height of the trial designs with weight. 

 

 

Figure 6.9d Distribution of the shape of the trial designs with weight. 
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6.2.4 Results of numerical experiments 

Results of numerical experiments are shown in Fig. 6.10a and b. In both figures, 

each point represents one design; the solid lines represent the natural frequency and 

maximum deflection of flat plates (according to Eq. 6.15 and 6.13). The computations 

were carried out using SDRC I-DEAS Master Series 7 software running on a personal 

computer with Pentium III 500Mhz CPU and Windows NT operating system. 

Approximate time to solve for each design is 2 minutes, which results in 150 hours of 

total computation time for 4,500 trial designs. 

 

 

Figure 6.10a Natural frequency of the trial designs plotted against their weight. 
The solid line represents the variation of the natural frequency of a 
flat plate with weight. 
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Figure 6.10b Maximum deflection of the trial designs plotted against their weight. 
The solid line represents the variation of the maximum deflection of 
a flat plate with weight. 
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6.3 Data analysis 

In this stage robustness analysis is performed to obtain SNR with respect to both 

the objective functions. Those SNR together with the two objective functions are taken to 

be the four design objectives. Upon observation of the objective function space, 

performance criteria are set up and a feasible design set is selected. Subsequently, robust-

optimum solutions are extracted from the feasible design set. Finally all the information 

is compiled into design rules. The details of each step are presented next. 

 

6.3.1 Robustness analysis 

In the previous section, we have conducted numerical experiments on 4,500 trial 

designs. This information can be reused in robustness analysis. Since the design space is 

filled with trial design; for each trial design we can gather the neighboring designs to use 

in computing SNR. In order to gather the neighboring designs, we assume that internal 

noise can occur to the design condition, which makes the design move away from the 

original design point. Consider a design space in Fig. 6.11 and let rij be the distance from 

the neighboring design j to the original design i. This distance can be computed from the 

following formula; 

( ) ( ) ( )222
ijijijijr HHPPTT −+−+−=  (6.16)

 

where T, P and H are the normalized form of the non-dimensional variables, T,  P and H, 

such that the maximum value of each variables is one and the minimum value is zero, i.e.  

T = (T-Tmin)/(Tmax-Tmin). We also obtain W, the normalized form of W, by the same way. 
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Given that R is the neighborhood radius that is caused by noise, design j can be 

considered as the neighbor of design i if both of the following conditions are satisfied: 

(1) rij ≤ R  

(2) |Wi - Wj| ≤ R 

Note that the shape of the corrugation, Γ, is not used in computing the neighborhood. 

This is because we do not wish to limit the shape to small perturbations and instead take 

all shapes corresponding to Γ between 0 and 1. Once the neighbor designs are gathered, 

the values of their objective functions are used to determine SNR by Eq. 5.2 for natural 

frequency and Eq. 5.1 for maximum deflection. 

 

 

 

 

 

 

 

 

Figure 6.11  Neighborhood of a design. 

 

Using this method with R = 10%, most of the trial designs have more than 25 neighboring 

points. We are able to check for robustness of all the 4,500 trial designs. The results are 

shown in Fig. 6.12a and b. 
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Figure 6.12a Signal-to-noise ratio with respect to the natural frequency of the trial 
designs. 

 

 

 

Figure 6.12b Signal-to-noise ratio with respect to the maximum deflection of the 
trial designs. 
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6.3.2 Feasible solutions 

At this stage we have four objectives to consider, which are maximization of Ω, 

minimization of Umax, maximization of SNR(Ω) and maximization of SNR(Umax). To 

select feasible designs from the trial designs we first observe the objective function space 

in  Fig. 6.10a and b and Fig. 6.12a and b. Boundary points are extracted from each figure. 

Parts of the boundary points are used to form upper and lower envelopes. The envelopes 

are made smooth and continuous by cubic interpolation splines. We then use these 

envelopes to rescale the objective function and apply the min-max method (described in 

section 3.2.2) to form a new quantity called the feasibility index. The details of the 

process are shown next with the use of an example for natural frequency objective. 

 

Step 1. Boundary extraction 

 

Figure 6.13 Convex hull of a plot between natural frequency and weight. 
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A convex hull method (O’Rouke, 1993) is used to find the boundary of the data 

points. The result is shown in Fig. 6.13, where open circles are the boundary points that 

form a convex hull.  

 

Step 2 Determining the feasible region 

The upper part of the boundary in Fig 6.13, which we call “upper envelope”, 

corresponds to the best design. The upper envelop is made smooth and continuous by a 

cubic interpolation spline (shown as B0 in Fig. 6.14). The worst design boundary or the so 

called “lower envelope” is obtained from the natural frequency of a flat plate (given in 

Eq. 6.15 and shown as B1 in Fig. 6.14). The objective function space is now bounded 

with upper and lower envelopes as shown in Fig. 6.14. 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 Graphical representation of the feasible region in the Ω - W objective 
function space. 
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The line Bγ determined by the parameter γ  (γ  ranges between zero and one) denotes the 

feasible region. 

 

Step 3. Transforming the objective function 

Once the upper and lower envelopes are set, we transform the objective function Ω into 

Φ1
 by setting the value of Φ1 at B1 to be one and B0 to be zero. Then the value 1

iΦ  of the 

design i is given by a linear interpolation between B1 and B0, 

01

01

BB

B

ΩΩ
ΩΩi

i −

−
=Φ . (6.17)

In the above, all the Ω are for the same weight as the design i. After this transformation 

we can plot the new objective function, Φ1 as shown in Fig. 6.15. The feasible region is 

then Φ1 < γ . 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Transformed natural frequency vs. weight. 
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Step 4. Apply min-max method 

The example shown in step 1 to step 3 is for transforming just the natural 

frequency. We need to repeat these steps to transform the other three objective functions. 

A modification is needed for objective functions SNR(Ω) and SNR(Umax). For each of 

these objectives, the lower envelope is taken to be the lower boundary instead of the 

performance of a flat plate because we do not have SNR of a flat plate.  

Once all the objectives are transformed we rewrite them as 

Transformed natural frequency, Φ1 

Transformed maximum deflection, Φ2 

Transformed SNR(Ω),   Φ3 

Transformed SNR(Umax),  Φ4 

The new quantity called feasibility index is set up using a min-max approach as  

Φ = max( Φ1, Φ2, Φ3, Φ4) (6.18)

 

By using the above index we can set up the feasible region using only one 

common upper limit of Φ and screen out the feasible designs. Figure 6.16 shows the 

increase in the number of feasible solutions as the limit γ is increased. We choose γ  = 

0.25 which leads to a total of 292 feasible solutions (6.5% of the total number of trial 

designs). Figures 6.17a to c show the natural frequency, maximum deflection and 

feasibility index of the feasible solutions (filled circles) in comparison with the trial 

designs (small dots). 
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Figure 6.16 Numbers of feasible solutions vs. upper limit of the feasibility index. 

 

 

 

 

 

 

 

 

 

 

Figure 6.17a Natural frequency vs weight of the feasible designs in comparison 
with the trial designs and flat plates. 
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Figure 6.17b Maximum deflection vs weight of the feasible designs in comparison 
with the trial designs and flat plates. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17c Feasibility index vs weight. Feasible designs are represented with 
filled circles. Small dots are trial designs. 
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6.3.3 Pareto robust-optimum solutions 

 To obtained the robust-optimum designs, it becomes neccessary to drop the last 

two objective functions, SNR(Umax): Φ3 and SNR(Ω): Φ4.  This is because the SNR that 

are computed using neighboring samples are not accurate enough to use for finding the 

Pareto solution (see discussion). And since the feasible designs obtained in the previous 

section are considered relatively robust already, we can now focus on the two original 

objectives, natural frequency and maximum deflection.  We pursue the Pareto robust-

optimum design by trying three different objectives which are: 

Pareto set no. 1 (PS1): Maximizing natural frequency 

Pareto set no. 2 (PS2): Minimizing maximum deflection 

Pareto set no. 3 (PS3): Minimizing min-max objective function f where 

f  = max (Φ1,Φ2). (6.19)

 

To obtain each Pareto set, we set up the boundary searches in two-dimensional spaces of 

Ω - W,  Umax - W and  f - W. The results are compared in Fig. 6.18a to c. 
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Figure 6.18a Natural frequency of Pareto sets number 1, 2 and 3. 

 

 

 

 

 

 

 

 

 

 

Figure 6.18b Maximum deflection of Pareto sets number 1, 2 and 3. 
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Figure 6.18c Min-max objective function of Pareto sets number 1, 2 and 3. 
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Table 6.2 Comparison of Pareto set. 

Ranked by Pareto set 
Number Natural 

frequency 
Maximum 
deflection 

Min-max 
objective 
funciton 

Overall 
(add the three 

ranking) 

1 1 2 2 5 
2 3 1 3 7 
3 2 2 1 5 

 

 

 

 

(a) W = 0.003 

 

 

(b) W = 0.01 

 

 

(c) W = 0.02 

 

Figure 6.19 Crossectional geometry of robust-optimum corrugated panel designs. 
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6.3.4 Design rules for robust-optimum design 

From the solution set obtained in 6.3.3, we observe the characteristic of the 

robust-optimum designs by making the plots between design variables and weight as 

shown in Fig. 6.20a to d. In those figures, small dots represent the trial designs, circles 

represent the feasible designs, filled squares connected with dashed lines are the robust-

optimum designs and solid lines are the estimation of robust-optimum design variables.  

By least square fittings of the data set PS1, the relationships between the robust-optimum 

design variables and weight can be estimated by following formulas: 

T = 0.31W (6.20a)

P = 0.058 + 14W – 270W2 (6.20b)

H = 0.064 + 10W – 220W2 (6.20c)

Γ = 0 (triangle) (6.20d)

 

We generate a set of robust-optimum designs following the above formulas and 

solve for natural frequency and maximum deflection and also compute the feasibility 

index.  The results are shown in Fig. 6.21a and c. From those results, least square fittings 

is performed to estimate the relationship between natural frequency and weight (Eq. 

6.20e) and the relationship between maximum deflection and weight (Eq. 6.20f) of the 

robust-optimum designs. The formulas in Eq. 6.20a to f are the proposed design rules.  

Ω = 0.041 + 4.9W – 130W2 (6.20e)

Umax = 0.54W -1.5 (6.20f)
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Figure 6.20a Thickness of robust-optimum designs compared to the thickness of 
the feasible designs and the trial designs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20b Pitch of robust-optimum designs compared to the pitch of the 
feasible designs and the trial designs. 
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Figure 6.20c Height of robust-optimum designs compared to the height of the 
feasible designs and the trial designs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20d Shape of robust-optimum designs compared to the shape of the 
feasible designs and the trial designs. 
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Figure 6.21a Natural frequency of robust-optimum designs generated using the 
proposed design rules compared with the natural frequency of the 
trial designs and flat plates. 

 

 

 

 

 

 

 

 

 

Figure 6.21b Maximum deflection of the robust-optimum designs generated using 
the proposed design rules compared with the maximum deflection of 
the trial designs and flat plates. 
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Figure 6.21c Min-max objective function of the robust-optimum designs 
generated using the proposed design rules compared with the min-
max objective function of the trial designs. 
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Table 6.3 Design rules for robust-optimum corrugated panel structures.* 

  Unconstrained H ≤ 0.1** H ≤ 0.075 H ≤ 0.05 

T 0.31W 0.25W 0.25W 0.38W 

P 0.058 + 14W – 270W2 0.1 0.08 6.5W + 0.037 

H 0.064 + 10W – 220W2 0.1 0.075 0.05 

R
ob

us
t-o

pt
im

um
 d

es
ig

n 
va

ria
bl

es
 

Γ 0 Min(56W – 0.2, 1) Min(120W – 0.07, 1) 1 

Ω 0.041 + 4.9W – 130W2 0.06 + 0.59W 0.05 + 0.43W 0.038 + 0.18W 

Umax 0.54W -1.5 (0.0024 + W)-1.5 (0.0009 + 1.1W  
– 15W2)-1.5 

(0.0013 +  0.55W – 
5.4W2)-1.5 

Notes:   

*   This table is only applicable to isotropic materials with ν = 0.29 and a weight range of  

0.002 ≤ W ≤ 0.02. Formulas for Ω and Umax only provide a rough estimate. 

** Use only when the formulas for unconstrained case fails to satisfy the height 

constraint 
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Figure 6.22a Graphical representation of the relationships between the thickness 
and weight of the robust-optimum corrugated panel structures 
according to the design rules in Table 6.3. 
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Figure 6.22b Graphical representation of the relationships between the pitch and 
weight of the robust-optimum corrugated panel structures  
according to the design rules in Table 6.3. 
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Figure 6.22c Graphical representation of the relationships between the height and 
weight of the robust-optimum corrugated panel structures according 
to the design rules in Table 6.3. 

 



 

 

122

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

W

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Γ

Unconstrained
H <= 0.1
H <= 0.075
H <= 0.05

 

Figure 6.22d Graphical representation of the relationships between the shape and 
weight of the robust-optimum corrugated panel structures according 
to the design rules in Table 6.3. 
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Figure 6.22e Graphical representation of the relationships between the natural 
frequency and weight of the robust-optimum corrugated panel 
structures according to the design rules in Table 6.3. 
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Figure 6.22f Graphical representation of the relationships between the maximum 
deflection and weight of the robust-optimum corrugated panel 
structures according to the design rules in Table 6.3. 

 

Note that the design rules in Table 6.3 do not provide an explicit relationship 

between the design variables and weight since weight also a function of the four design 

variables hence the design rules must be used in a recursive manner. For example, 

designers would select weight, W* ,first then use W* in Eq. 6.21a to c (first column of 

Table 6.3) to obtain T, P and H.  Finally the actual weight, W, is calculated using T, P and 

H (the actual weight will turn out to be close to the selected weight). A practical example 

given in the next section demonstrates the use of design rules. 
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6.4 Example problems 

6.4.1 Corrugated panel structure with deflection constraint 

Suppose that one wants to design the square corrugated panel structure of width 1 

meter to sustain a uniformly distributed load q = 20 kN/m2. The maximum allowable 

deflection is 0.1 mm. The material is isotropic steel with E = 203 Gpa, ν = 0.29 and ρ = 

7.85x103 kg/m3. To find such a design, first we need to determine the non-dimensional 

form of from the maximum deflection (using Eq. 6.9) which is Umax = 103. Then we use 

use Umax to solve Eq. 6.20f and obtain the estimated weight, which is W* = 0.0066. From 

W*, we can obtain the values of robust-optimum design variables from Eq. 6.20a to d 

(also shown in Table 6.3), which are: T = 0.002, P = 0.14, H = 0.12 and the shape Γ 

which is triangular. Using these values of T, P, H and Γ, we solve for the actual values of 

weight, which is W = 0.0065. The natural frequency and maximum deflection are then 

obtained using I-DEAS, they are Ω = 0.07 and Umax = 920.  In actual units, the robust-

optimum design is; thickness = 2 mm., pitch = 14 cm., height = 12 cm., weight = 51 kg, 

natural frequency = 350 Hz and a maximum deflection = 0.09 mm. The cross-section of 

the structure is shown in Fig. 6.23. 

 

 

 

 

Figure 6.23 Cross-sectional wire-frame geometry of a robust-optimum 
corrugated panel structure for Umax = 103. 
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6.4.2 Corrugated panel structure with deflection and height constraint 

 In this section the design problem of the earlier section is demonstrated with an 

imposed height constraint. If a height constraint of 75 mm. is imposed then the robust-

optimum design with H = 0.12 does not satisfy the height constraint. In this case the 

formulas in the third column of Table 6.3 must be used instead. For Umax = 103, we solve 

the estimated weight using the equation in the last row and obtain W* = 0.0095. Then the 

design variables can be computed as T = 0.0024, P = 0.08, H = 0.075 and Γ = 1.  

 We now solve for the actual weight, which is W = 0.0091 and obtain Ω = 0.053 

and Umax = 990 using I-DEAS. The robusr-optimum design in physical units is; thickness 

= 2.4 mm., pitch = 8 cm., height = 7.5 cm., weight = 75 kg, natural frequency = 270 Hz 

and maximum deflection = 0.1 mm. The cross-section of the structure is shown in Fig. 

6.24. Note that due to the height constraint, the weight in this case is larger than the 

previous case and the shape is different as well. 

 

 

 

 

 

Figure 6.24 Cross-sectional wire-frame geometry of a robust-optimum 
corrugated panel structure for Umax = 103 and H = 0.075 
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6.5 Discussion 

6.5.1 Sensitivity analysis 

Second order response functions are fitted to the 292 feasible designs in order to 

approximate the relative effect of each design variable on natural frequency, maximum 

deflection and weight of the feasible designs. Equation 6.21 shows the form of the second 

order response function to be.  
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   (6.21) 

 

where F represents the dependent functions (W, Ω or U); T, Γ, P and H are in normalized 

forms, i.e. T = (T - Tmin)/(Tmax - Tmin). Coefficients ci are obtained using least square 

fitting. To obtain a better fitting for maximum deflection, a new dependent variable 

letting F = log10(Umax) is used instead of Umax. Although the response functions do not 

accurately predict the relationships, the coefficients in the functions do provide 

reasonable approximation of the relative effects of design variables. The results are 

shown in Table 6.4.  
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Table 6.4 Coefficients of the response functions of the feasible designs. 

 

 
I Variable F =W  F = Ω F = log10(U) 

c0 1 1 0.00354 0.0467 3.52

Fi
rs

t o
rd

er
, 

c i/
c 1

 2 
3 
4 
5 

T 
Γ 
P 
H 

6.89
0.0220

-4.37
1.90

0.0682 
        0.698  

        -0.704  
2.18 

-0.568  
-0.0623

0.402  
-0.460

Se
co

nd
 

or
de

r, 
c i/

c 1
 

6 
7 
8 
9 

T2 
Γ2 
P2 
H2 

 -0.325 
  0.0542

  7.34  
 -0.632

-0.814  
-0.896  
-0.231  
-2.30 

0.355  
0.0201

-0.00606
0.112

M
ix

ed
, c

i/c
1 10 

11 
12 
13 
14 
15 

TΓ 
TP 
TH 
ΓP 
ΓH 
PH 

0.918  
-5.75  
3.64  

-0.165  
-0.216  
-4.34

1.76  
-0.0351 

1.81  
0.503  
-3.43  
0.773 

0.0340
-0.309  
0.137  

-0.0634
-0.0284
0.0828

Average error(%)
Maximum error(%)

2.1
16

1.7  
11 

4.9
25

Normalization 
Factor 

Tmin/Tman 
Γmin/Γmax 
Pmin/Pmax 
Hmin/Hmax 

0.000682/ 0.00765 
0.0/0.912    

0.05/0.426     
0.075/0.2 

 

 

Note that the result in Table 6.4 are only valid in the feasible region. The response 

functions over the total design space would be quite different. The coefficients of the first 

order terms suggest that height has the largest effect on the natural frequency while 

thickness has the largest effect on maximum deflection and weight of the structure. Shape 

of the corrugation has a relatively small overall effect. The second order terms describe 

the effect of the values of the design variables on robustness. They show that height has 

the most effect on robustness with respect to natural frequency.  
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6.5.2 Effect of numbers of samples on SNR 

In the computation of SNR of the trial designs in section 6.3.1, the numbers of 

neighbor designs used for computation are different from one design to another (most of 

the design have 10 to 30 neighbors).  Figure 6.25 shows the distribution of number of 

neighbors used in computing SNR for the trial designs. It is expected that the values of 

signal to noise ratios converge with the increasing numbers of neighbors, in order to 

make comparisons of SNR of different designs we assume that numbers of neighbors do 

not have much effect on the SNR. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.25 Distribution of numbers of samples used to compute SNR. 
Neighborhood radius = 10%. 

 

To verify this assumption, a few designs (with varying numbers of neighbors) are 

chosen for the convergence study. The result in Fig. 6.26 shows that 25 to 50 neighbor 
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samples would be required for a good estimate of SNR but as few as twenty-five may be 

used for a rough estimation. This explains the reason why in section 6.3, we only use 

SNR can be used to screen out infeasible designs but may not be used to determine 

robust-optimum designs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.26 Convergence study of the signal-to-noise ratio of natural frequency. 
Neighborhood radius = 10%. 

 

6.5.3 Stress 

The coarsely meshed finite element models that were used in this study provide 

quite accurate results for natural frequency and deflection but are not accurate for 

determination of the stress. For this reason, we did not use stress as one of the objective 

functions but this does not necessarily imply that the robust-optimum designs are inferior 
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stress. Figure 6.27 shows the maximum stress in the robust-optimum designs (obtained 

with the design guideline) compared to the trial design and flat plates. Note that, as we 

mentioned earlier, the stress solutions shown here are not accurate. 

 

 

 

 

 

 

 

 

 

 

Figure 6.27 Maximum stress vs. weight. 

 

6.5.4 Application of design rules 

All the results are based on isotropic steel with a Poisson ratio of 0.29 so the rules 

can only be applied to steel and other alloys with similar Poisson ratio. Cross-sectional 

geometry of the corrugated plates is based on the three basis shapes in Fig. 6.5. 

Moreover, the computations are carried out only for square plates (aspect ratio = 1) under 

uniformly distribution loads with simply supported edges. The design rules are only valid 

in the range of 0.002 ≤ W ≤ 0.02. However the rules may be used to suggest initial 

designs for design problems in the following cases. 
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Clamped supports 

With clamped supports the suggested design will leads to a better performance in term of 

deflection and natural frequency than that given in Fig. 6.21a and b. 

 

Support on two opposite edges only 

The ridges of the corrugated plate should be aligned parallel to the edges without the 

support. Dimension a should be based on the length of the unsupported edges. 

 

Different aspect ratios 

The dimension a should be based on the length of the shorter edges and the ridges of the 

corrugated plate should be parallel to the shorter edges. 

 



 

 

Chapter 7 

 

Concluding Remarks 

 

This research focuses on the development of an optimum and robust design 

methodology by integrating existing CAD and CAE tools. We have demonstrated such 

integration in Chapter 4 for design optimization. In the CAD part of the work, use of 

NURBS curves (Bezier and B-spline form) allows the design space to be explored using 

only a few design variables. Moreover, the degree elevation property of Bezier curves 

enables us to explore the design space with minimal number of control points at first and 

progressively increase the number as needed. The CAE tools (governing equation solvers 

such as the flow solvers) are used as black boxes. A generic optimization algorithm was 

developed based on the black-box approach with the use of design of experiments (DOE) 

and steepest descent techniques and a computer program (“optimizer”) is written based 

on this algorithm. We were able to integrate the optimizer with several black-box solvers 

through the use of previously described CAD tools. In all the examples there are 3 to 5 

design variables and they require direct solutions numering Ο(100) to converge to an 

optimum solution. These numbers can be decreased by improving the optimizer. One of 

the possible ways to increase efficiency of the optimizer is to develop some means (e.g. 
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some form of a trust region analysis) to track the behavior of the local response function 

during the search in order to automatically select a suitable DOE technique (finite 

difference, factorial design or small composite design) for each design iteration. For 

further improvement, one can also use the information obtained from the DOE such as 

the effects of each control point to identify the most sensitive region along the curve and 

specifically add more control points to that region instead of simply using a degree 

elevation algorithm. 

 

A robustness analysis methodology was developed and tested in Chapter 5. In 

order to simulate noise, we perturbed the original geometry within a given tolerance zone 

using B-spline error curves. The effect of noise is quantified using mean, standard 

deviation, probability of failure (POF) and signal-to-noise ratios (SNR). The SNR and 

POF were found to be useful tools for robustness analysis. With these tools, we are able 

to identify robust designs in four example problems and show that an optimum design is 

not necessarily robust. We found that SNR is a quick tool for a relative comparison of 

different design while POF is a more meaningful quantity in an absolute sense. For use of 

POF as a measure, one needs to explore the use of appropriate probability distribution 

function. Moreover the patterns used for noise simulations should be designed to provide 

a good approximation of a distribution of noise if such a distribution is known. 

 

In Chapter 6, a fixed-form (as opposed to free-form) geometric design problem is 

explored. The specific problem investigated is that of design of corrugated panel 

structures as a multicriteria, fixed-form geometric design problem. We continue using the 
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idea of a black-box solver and were able to automate the direct solution process. This 

enables us to explore the design space very exhaustively. A total computational time of 

150 hours on a 500 MHz Pentium III machine was spent in solving for natural frequency 

and deflections of 4500 trial designs using I-DEAS Master Series 7 software. Since the 

design space is filled with a large number of trial designs, we are able to perform 

robustness analysis on every trial design by using the neighboring designs to represent 

the effect of noise. We use SNR for quick comparisons of robustness among the designs. 

After an intensive analysis of this information we observe a pattern among the design 

variables of the “robust-optimum designs” and we propose them as robust-optimum 

design rules.  

 

One can see from the work presented in this thesis that complex design problems 

can be solved with integration of relatively simpler engineering tools. As CAD, CAE and 

CAM tools become more mature it is important for engineers to realized the capability of 

these existing tools and make most use out of them by using them together.  
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Appendix 

 

A.  Multi-dimensional response function 

This section provides a methodology to find coefficients of a response function by 

a least square approach. Consider a scalar value y that is a function of design variables x 

= (x1, x2, x3,…, xn). The exact relationship is unknown and is represented with a function 

F; y = F(x). We try to approximate the response of the function F with a response 

function F̂ ; y = F(x) ≈ )(ˆ xF .  

 

Let ∑
=

=
k

i
iiGcF

1
)()(ˆ xx  where ci are unknown constant coefficients and Gi are 

known functions and F̂  is called the response function. Two basic examples of response 

functions for n = 3 are given below  

 

• linear response surface  

k = n + 1 = 4 

G1 = 1, G2 = x1, G3 = x2 and G4 = x3 
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• second-order response surface 

k = ½ n (n - 1) + 2n + 1 =10 

G1 = 1, G2 = x1, G3 = x2, G4 = x3,  

G5 = 2
1x , G6 = 2

2x , G7 = 2
3x , 

G8 = x1 x2, G9 = x1 x3 and G10 = x2 x3 

 

To obtain the coefficients of the response function, first we must have a sufficient 

number of samples, m ≥ k. A set of m samples can be written in the form of: F(xi) = di, I 

= 1,2,3,…, m. Then match the response function to the data set and write it in the matrix 

form as: 

GC = D 
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The coefficient C can be obtained from 

C = (GTG)-1GTD 
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This approach is called least square fitting because the response function obtained 

this way will minimize the square of error. This can be shown as the following; 

 

Let E be the error,  E = D-GC. 

And let J be the square of error, 

J = (D-GC)2 = DTD - 2GTCTD + CTGTGC. 

To find C that minimize J, set  

C
J

d
d  = -2GTD+ 2GTGC = 0 

C = (GTG)-1GTD 
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B. Validation of the black-box solver 
 

B.1  Potential flow solver 

The potential flow solver by Liggett and Lui (1983) is designed to solve the 

Laplace equation using boundary element method. With this method, only the boundaries 

are required to be discretized, no internal grid is required. We test this solver for accuracy 

and grid convergence with a potential flow through a channel in Fig. B.1 

 

 

 

 

 

 

 

Figure B.1 Potential flow through a channel. 

 

The average of magnitude of the transverse velocity components on the inlet and outlet 

boundaries is computed as Vavg. The theoretical value is trivial and is equal to zero. The 

solutions of Vavg for different element sizes are shown in Fig. B.2. The figure shows that 

the solutions converge to the theoretical value of zero as the element sizes are reduced. 
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Figure B.2 Convergence study of the boundary element solver. 

 

B.2  Laminar flow solver – CAFFA 

CAFFA is developed by Ferziger and Peric (1996). It solves Navier-Stokes 

equations for incompressible laminar flow. The solver is designed to work with two-

dimensional, non-orthogonal, multi-level structured grid using SIMPLE algorithm. We 

test CAFFA with a planar channel with backward-facing step on the lower wall as shown 

in Fig. B.3. According to the experimental result by Armaly et. al. (1983) the 

reattachment points vary with the inflow Reynolds number. The tests are conducted at Re 

= 50, 100, 150 and 200. Initially the computational domain is divided into 50x10 control 

volumes, CAFFA then subdivides the grids in halve, i.e. second grid level is 100x20 and 

third grid level is 200x40. In Fig. B.4, a plot between distance to the reattachment point, 

Xr and Reynolds number is presented. We observe from the figure that the flow solver 

does have grid convergence behavior and that the trend of numerical results agrees with 
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that of experimental results. However, due to the strong re-circulation (as shown in Fig. 

B.5 for Re = 100), it is normal for the flow solver has a certain amount of error in 

predicting the flow field.  

 

 

 

 

 

 

Figure B.3 Schematic diagram of flow in a planar channel with a backward-
facing step on the lower wall. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.4  Grid convergence study of CAFFA flow solver 
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Figure B.5 Streamline plot of the flow in a planar channel with a backward-
facing step on the lower wall. Re = 100. 

 

 

B.3  Static finite element solver  

The finite element flow solver is developed by Betti (1997). It solves two 

dimensional linear quadrilateral shell elements for stress and deflection. We use a simple 

cantilever beam problem to test grid convergence property of this solver. The 

configuration of the problem is shown in Fig. B.6. The thickness of the beam is t, and 

Young’s modulus is E 

 

 

 

 

 

 

Figure B.6 Cantilever beam 

 

The theoretical solutions for stress and maximum deflection are; 
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We consider those theoretical solutions as exact solutions. The numerical solutions are 

performed with different element sizes. Figure B.7 shows decreasing in errors as element 

sizes decrease.  
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Figure B.7 Grid convergence study of the finite element solver. 

 

B.4  I-DEAS linear statics and normal mode dynamics solvers 

 
The solvers are validated with a simple problem of a thin square plate of thickness 

t and width a with simply supports on all four edges. For static solution the plate is 

subjected to a uniformly distributed load of intensity q. The analytical solutions for 

maximum deflection, maximum stress and natural frequency are 

Error in maximum deflection
Error in maximum stress
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Figure B.8 shows that magnitudes of errors of the numerical solutions of umax and ω 

decrease with the decreasing element sizes. Stress solutions do not exhibit grid 

convergence behavior.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure B.8 Grid convergence study of I-DEAS finite element solvers. 
 

 

-20

-15

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)

Element size (% of plate width)

'convflat.txt' u ($5/10):($2-44623)/446.23
'' u ($5/10):($3-2870)/28.7

'' u ($5/10):($4-0.0094773)/.000094773

Maximum deflection 
Maximum stress 

Natural frequency 



 148

C. Batch mode program for I-DEAS Master Series 7 

In order to generate solutions for a large set of trial designs in Chapter 6, batch 

program is used. I-DEAS geometry based finite element model is not suitable for batch 

operation in this case because topology changes from one design to another. This makes 

it hard to select surface in grid generation process. To by-pass this problem, for each 

design a finite element model consisted of nodal coordinates, nodal connectivity and 

boundary conditions is generated by a Fortran program and input to I-DEAS via program 

files (node.prg, element.prg, restraint.prg and force.prg).  The main program file, run.prg, 

is written manually to execute those program files. Run.prg is invariant with design 

changes. The procedures are described with Fig. C.1 and followed by example of 

program files.  
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Figure C.1 Flow chart of I-DEAS batch mode program.
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In Fig. C.1 the system command issued from Fortran program to run I-DEAS in batch 
mode is: 
 
d:\ideas\ms7\bin\ideas.cmd -b -q -g -m "DUL01" -a SI -e "/f pr r fil run.prg"; okay 

 
run.prg 
 
K : $ return 
K : $ /ta ME 
CL: ---Create nodes 
K : $ /f pr r fil node.prg; okay 
CL: ---Set isometric view 
K : $ mpos :; /v v pe of; e 3 4 5 0; 
okay; 
K : $ AU 
CL: ---Create THIN SHELL1 elements  
K : $ /f pr r fil element.prg; okay 
CL: ---Boundary conditions-statics 
K : $ /ta BO 
K : $ mpos :; /a li 
K : $ mpos :; /b 
K : $ okay: 
CL: ---Restraint set 
K : $ /f pr r fil restrain.prg; okay 
CL: ---Forces  
K : $ /f pr r fil force.prg; okay 
K : $ /ta bo b 
K :  SE RT ON 
K :  ! SE LO 1; 
K : APPL 
K : OKAY 
CL: ---Model solution--linear statics 
K : $ /ta MO 
K : $ mpos :; /ss 
K :  CRE 
K : OKAY 
CL: 1 - SOLUTION SET1 
K :  DMN 1; 
K :  MOD 
K :  OS 
K :  OTY 1; 
K :  STL STI 
K :  OTY 2; 
K :  STL STI  
K : APPL 
K : OKAY 
K : OKAY 
K : CANC 

CL: ---solve 
K : $ mpos :; /so 
K :  LOF statics.lis 
K : OKAY 
CL: ---Delete linear static solution 
K : $ /ta MO 
K : $ mpos :; /ss 
K :  DMN 1; 
K :  DEL 
K : Y 
K : CANC 
CL: ---Boundary condition--dynamics 
K : $/ ta BO 
K : $ mpos :; /a no 
K : $ mpos :; /b 
K :  SE RT ON 
K : APPL 
K : OKAY 
CL: ---Model solution--dynamics 
K : $ $ $ /ta MO 
K : $ mpos :; /ss 
K :  CRE 
K :  TY NDL 
K : OKAY 
CL: 1 - SOLUTION SET1 
K :  DMN 1; 
K :  MOD 
K :  OS 
K :  OTY 1; 
K :  STL STI 
K : APPL 
K : OKAY 
K : OKAY 
K : CANC 
CL: ---solve 
K : $ mpos :; /so 
K :  LOF dynamics.lis 
K : OKAY 
CL: ---exit, no save 
K : $/f e n: 
E : **** END OF SESSION **** 
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node.prg 
 
K : $ return 
K : $ /ta me n cr 
K : OKAY 
K : Y 
K : OKAY 
K : 0.0000,0.0000,0.0000     
K : 25.000,0.0000 ,0.0000  
K : 50.000 ,0.0000 ,0.0000  
K : 75.000 ,0.0000 ,0.0000  
K : 100.00 ,0.0000 ,0.0000  
K : 125.00 ,0.0000 ,0.0000  
K : 150.00 ,0.0000 ,0.0000  
K : 175.00 ,0.0000 ,0.0000 
 
... 
 
K : 935.13 ,  -66.667 ,1000.0  
K : 930.07 ,  -33.333 ,1000.0  
K : 959.80 ,  -100.00 ,1000.0  
K : 964.87 ,  -66.667 ,1000.0 
K : 969.93 ,  -33.333 ,1000.0  
K : done 
K :   
E :  
 
 

element.prg 
 
K : $ return 
K : $ /ta me e cr 
K : EL D2 
K : EF TN 
K : P 1 
K : ET LQ 
K : OKAY 
K : LAB 
K :     2;    3;  114;  113 
K :     3;    4;  115;  114 
K :     6;    7;  118;  117 
K :     7;    8;  119;  118 
K :    10;   11;  122;  121 
 
... 
 
K :  2145; 2146; 2257; 2256 
K :  2146; 2147; 2258; 2257 
K :  2149; 2150; 2261; 2260 
K : done: 
K : $ return 
K : $ mpos :; /ph mo 
K : 3 
K : 1 
K :   23.500    ;0;0;0 
K : done: 
E :  

restraint.prg 
 
 
K : $ return 
K : $ /ta bo cr re 
K : LAB 
K :   
K : node 
K :     1 
K :     2 
K :     3 
K :     4 
 
... 
 
K :     2028 
K :     2029 
K : don 
K : RT B 
K : okay 
K :   
E :  
 
 

force.prg 

K : $ return 
K : $ /ta bo cr f 
K : LAB 
K :   
K : node 
K :     1; 
K : don 
K : XF       0.00     
K : YF     -0.116E+05 
K : ZF       0.00     
K : okay 
K :   
K : $ /ta bo cr f 
K : LAB 
K :   
K : node 
K :   102; 
K : don 
K : XF       0.00     
K : YF     -0.116E+05 
K : ZF       0.00     
K : okay 
K :   
 
... 
 
K :   
E :  
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