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ABSTRACT 
Some problems in constrained shape optimization are 

considered. The goal in our optimization process is to maximize 
a measure of device performance computed using CAE, with a 
CAD compatible representation and specified geometric 
constraints. This approach illustrates several issues in 
integration of CAD and CAE systems.  We test our ideas on 
idealized internal flow devices where the underlying device 
physics is governed by either the Laplace or the Navier-Stokes 
equations. The geometric shape of the device is represented by 
Bezier curves. Analysis tools such as the grid generator and the 
fluid flow solver are treated as a black box. The search pattern 
during the optimization process is suggested by the design of 
experiment methodology. The proposed framework is tested 
with one potential flow problem and two laminar flow diffuser 
problems. 
 
1  INTRODUCTION 

The use of computer-aided design (CAD) systems for the 
representation of geometry is now commonplace. Complex 
shapes can be defined by a few control points using NURBS or 
Bezier curves in order to efficiently describe, store and transmit 
geometry. These systems have been integrated with computer-
aided manufacturing (CAM) systems to generate geometric 
representations of steps involved in manufacture of the part - 
e.g., tool paths for a CNC machine. The last three decades have 
also seen considerable advances in the use of computational 
techniques (e.g., boundary integral, finite element, finite 
difference, finite volume techniques) for the analysis of 

problems in fluid mechanics.  These computational fluid 
dynamic techniques fall in the realm of Computer Aided 
Engineering (CAE) systems. The maturing of CAE systems has 
led to the possibility of systematic improvements in design to 
achieve desirable properties. When formalized this process is 
sometimes called “design optimization” if the performance can 
be characterized by an objective function and the design is 
systematically altered until the objective function is satisfied. 
Such a process now also falls within in the realm of CAE.  
Traditionally, analysis and design optimization or CAE of fluid 
flow components has been carried out without considering the 
advantages or limitations afforded by CAD systems. In this 
paper emphasis is placed on integration of the parametric 
representation of shape by CAD systems with computational 
fluid flow analysis and design optimization. The ideas are 
explored by examining the design of three idealized fluid flow 
devices. Bezier curves are used for representation of device 
geometry which is then optimized by means of Design of 
Experiments (DOE) techniques.  

 
Earlier work in optimum design of fluid flow devices 

provided a reference point for the present effort. The Navier-
Stokes equations are a set of nonlinear partial differential 
equations that are elliptic in space for steady, incompressible 
flow. Using ideas of variational calculus and optimal control it 
is possible to derive adjoint equations, the solution to which can 
provide the direction and magnitude in shape change that can 
ensure improvement in a specified objective function. A 
comprehensive review of such and other techniques is provided 



 2 Copyright © 1999 by ASME 

by Labrujere and Slooff (1993) and Pironneau (1984). Using 
the ideas of Pironneau (1974), optimum laminar flow diffusers 
were considered by Cabuk and Modi (1992).  Similar ideas 
were also used in Huan and Modi (1996) for design of airfoils 
for minimum drag. These studies are, however, limited in the 
choice of objective functions, choice of boundary conditions 
and geometry constraints. Consequently, in spite of their 
computational efficiency, their applicability to practical 
problems is limited.  Due to the highly non-linear relationship 
between device performance and the boundary shape, one can 
also possibly use derivative-free methods, treat the solver as a 
black box, and use a simplex search or genetic algorithm to 
carry out the optimization. But the high computational costs 
associated with each direct solution of a fluid flow problem 
makes such an approach impractical.  

The present study seeks an algorithm that is independent of 
(a) the precise governing equation, (b) boundary conditions, (c) 
shape of the device, (d) fluid properties, and (e) geometric 
constraints.  Towards this goal a pattern search method based on 
the design of experiments approach is utilized in the optimizer 
to determine the derivative information.  These ideas have also 
been explored for a structural optimization problem by Zagajac 
(1998).   

 
To achieve our goal, the representation of device geometry 

should allow the design space to be explored by as few 
parameters as possible in order to minimize computational 
effort. It would also be desirable for this representation to be 
compatible with CAD tools.  Bezier curves provide an 
economic way to describe a shape. With a few control points, 
the shape of the curve (the idea can also be extended to 3 
dimensional surfaces) can be controlled. This allows the 
development of an approximate mathematical model of the 
relationship between the objective function and the control 
point locations. The goal of shape optimization is to find the 
locations of the control points that correspond to the optimum 
shape.   In Fig. 1, the optimizer performs optimization on the 
control point locations and uses the geometrical processor to 
convert the control point locations to the boundary points on the 
Bezier curves. The approach treats the flow solver as a black 
box. As shown in Fig. 1, inputs to the black box are the device 
geometry together with flow properties and boundary 
conditions. Output from the black box is the solution to the 
flow.  

 
Section 2 gives a brief description of Bezier curves. This is 

followed by a short summary of design of experiments adopted 
for our study in Section 3. The shape optimization algorithm is 
described in Section 4. In Section 5 the optimization 
methodology is first verified using the known solution to an 
idealized two-dimensional channel design problem. Then the 
problems of the design of plane and axisymmetric two-
dimensional diffusers in laminar flow are considered. These 
results are discussed in Section 6, and a summary is presented 
in Section 7. 

Figure 1.  Overview of the optimization process. 
 

 
2  BEZIER CURVE 

Curves can be represented in a variety of ways. In this 
study Bezier curves have been chosen for the geometrical 
processor in Fig. 1 because of their simplicity, generality and 
several useful properties outlined below. 

 

x

y

 
Figure 2.  Bezier curve of degree 5. 

 
 Bezier curve shown in Fig. 2 is defined parametrically as  
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We will exploit some useful properties of Bezier curves 
(Farin, 1993). These are (a) Bezier curves always lie inside the 
convex hull of their control points, (b) Bezier curves pass 
through the first and last control points and the slopes of the 
curves on both ends equal the slopes of the corresponding 
control polylines, (c) a Bezier curve of degree m can be exactly 
represented by a new Bezier curve of degree m+1 by degree 
elevation.  The first two properties are useful in handling the 
geometry constrains. The third property permits an increase in 
the degree of the curve by introducing additional control points 
so that the curve can represent a more complex shape when 
needed in the shape optimization process.   

 
3  DESIGN OF EXPERIMENT 

The optimizer in Fig. 1 relies on design of experiment, in 
our case a factorial analysis approach to obtain an approximate 
mathematical model of the system.  The approach is briefly 
described here, with a detailed description given in Box et al. 
(1979).  

 
Consider the problem of optimizing an objective function 

ƒ(x) where x = {x1, x2, x3,…, xn}. The initial value of x is 
identified with a super script zero as x0 = {x0

1, x
0

2, x
0

3,…, x0
n} 

and is called the initial point. The optimizer tries to find a new 
point x1 that improves the value of ƒ.  This is achieved by 
evaluating the objective function for a sample of data points in 
the neighborhood of the initial point. This sample is selected on 
the vertices of a hypercube, which is known as a full factorial 
analysis. The objective function values obtained at these sample 
data points can be used to construct a multi-linear response 
surface.   

 
The size of the neighborhood is specified by the ranges of 

xi, denoted as ±∆xi. These ranges are then used to obtain the 
normalized points X0 such that X0

i = 0, the normalized ranges 
±∆Xi = ±1, and the objective function F(X)= ƒ(x).  For n=2, Fig. 
3 shows a graphical representation of the 2n + 1 data points on 
which the experiments were conducted (each experiment 
involves one direct solution). The data points consist of one 
initial point (open circle in Fig. 3) and its 2n neighbors (solid 
circles in Fig. 3) at the vertices of a square (or cube for n=3, 
hypercube for n > 3).   

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Graphical representation of the data points for n=2. 

Once the objective function is evaluated at all the data 
points in Fig.3, we can build an approximate mathematical 
model from this data.  For small ∆xi, Φ(X), an estimate of the 
objective function F(X),  can be approximated as a multi-linear 
function 
 
Φ(X1,X2,X3 , …Xn) =  C0 + C1X1 + C2X2 + C3X3 + ….+ CnXn  + 
        Cn+1X1X2  + Cn+2X1X3 + Cn+3X2X3 + … +  

     … + CkX1X2X3 …Xn, where k=2n-1 
              (2) 

 
Using Yate's algorithm (described in Box et al., 1979), we 

can easily solve for the coefficients Ci to build the model in Eq. 
(2).  Once the model is built a steepest direction vector, v is 
obtained from vi = dΦ/dXi at the point X0 and is given by v = 
{C1, C2, C3,…, Cn}.  Upon normalizing the vector v,  a unit 
steepest direction vector V is obtained.  Since the model is valid 
only around the point X0, a tentative new point X' is obtained by 
moving a small distance δ*R where R is a radius of the search 
which is sqrt(n) and δ is approximately 1.  This new point is 
given by 

 
               X' = X0 ± δ *R *V             (3) 
 

(Add δ*R for maximization and subtract δ*R for minimization) 
 
The tentative point X' is not yet the point X1 for the next 

iteration. Assume that the optimization problem is that of 
maximizing the objective function. In order to determine the 
new point we must consider the following three cases: 

 
Case 1.  F(X') is greater than the maximum of the objective 

function at the 2n +1 data points of Fig. 3. Then the 
search continues along the steepest direction until there 
is no further improvement of the objective function. 
The next iteration begins at this point.  

 
Case 2. The maximum occurs at a vertex of the hypercube. 

Then that vertex is chosen as the origin for the next 
iteration.  

 
Case 3.  The maximum occurs at the initial point. Then a 

smaller hypercube of half its original size is 
constructed and the whole process is repeated until the 
size of the hypercube is smaller than some critical 
value.  

 
The search pattern for maximizing F(X) during one such 

iteration process for n=2 is shown in Fig. 4 where the first and 
the third iterations correspond to case 1, the second iteration to 
case 2 and the fourth, fifth and the sixth iterations to case 3.      

X1 

X2 

1 

-1 

1 

-1 
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Figure 4. Search pattern for maximizing F(X1,X2). 
 
 

4    ALGORITHM FOR SHAPE OPTIMIZATION 
This section describes the steps of the optimization 

algorithm.    
 

Step 1.  Represent the initial boundary of interest with a degree  
m Bezier curve.  The initial optimization parameters 
are also specified at this step. These are: the initial 
hypercube size, the smallest critical size of the 
hypercube, the maximum number of iterations and the 
maximum number of control points.  Value of an 
objective function, ƒ, depends on the locations of the 
control points.  
         ƒ  =  ƒ( P0, P1,..., Pm)  

=  ƒ( x0, y0, x1, y1,..., xm, ym)           (4) 
 

Step 2. Apply geometrical constraints to the control points.  
These constraints may consist of  
 a) fixing the end point of the curve  
 b) fixing either x- or y-coordinates of all the control 
points  
 c) fixing the slope at one of the end points of the 
curve.   
When this is done, the 2m+2 variables in Eq. (4) are 
reduced. The remaining coordinates are considered to 
be the n variables for Eq. (2). 

  
Step 3. Use the design of experiment procedure described in 

the previous section to find the new point given by the 
values of the n variables in order to improve the 
objective function. The new values of the n variables 
at each iteration define the new locations of the control 
points. These control points describe the new shape of 

the curve and hence the boundary points on the new 
curve. Note that the black-box solver (consisting of the 
grid generator and the flow solver) is used to compute 
the values of the objective function for any given set of 
boundary points on the curve.  Each implementation of 
step 3 is considered one design iteration. Note that one 
design iteration consists of several direct solutions.  

 
Step 4.  Check whether the following criterions are satisfied.  

a) the size of the hypercube is smaller than prescribed 
smallest critical size 
b) there is no improvement in the objective function 
for two consecutive iterations  
c) the prescribed maximum number of iterations has 
been reached.  
If none of these conditions is met then return to step 3. 
If any of these conditions is met, then go to step 5. 

 
Step 5.  Check if any of the following two conditions is met: 

a) There has been no improvement in the objective 
function between the current degree of the Bezier 
curve and the lower degree curve.  
b) The prescribed maximum degree of the Bezier 
curve is reached.  

 
If either of these conditions is met then stop the entire 
optimization process. If not, then increase the degree 
of the Bezier curve by one through degree elevation 
and repeat the optimization process by returning to 
step 2. 

 
5  EXAMPLE PROBLEMS 

5.1 Potential flow through a channel  

 An idealized problem with an obvious optimum shape 
for a given objective function is selected for validation first.   
The flow is assumed to be inviscid with a vorticity free inlet 
velocity profile. Hence the fluid flow reduces to potential flow, 
which in two dimensions permits the use of a simplified 
governing equation given by the Laplace equation. The flow 
within a two-dimensional channel bounded by two slip walls is 
considered as shown in Fig. 5. The geometric constraints are 
prescribed inlet width, outlet width, and a prescribed straight 
lower wall. The flow through the channel is given by ∇2ψ= 0, 
where ψ is the stream function.  The x- and y-components of the 
velocity are u = -dψ/dy are v = dψ/dx respectively. An 
additional constraint in the boundary conditions is now 
imposed. The flow at inlet and outlet is prescribed to be plug 
flow (u=1) so that ψ = -y at x = 0 and 1.  The objective function 
is specified to be the average of the absolute values of the y-
velocity component over the inlet and the outlet or V =  
average{|(dψ/dx)|inlet&outlet}.  The optimization problem is then 
the determination of the upper wall shape in order to minimize 
V. This problem has an obvious solution given by a straight 
upper wall between the inlet and the outlet. 
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Figure 5.   Potential flow through a channel.   
 
 
For this particular problem a fixed number of control points 

- 4 control points (degree 3-Bezier curve) - were used to 
describe the upper wall. Hence in this problem the step 5 of 
section 4 is not relevant.    Because of the geometry constraints 
of fixed inlet and outlet widths this reduces the number of 
variables to 4, i.e. the x and y-coordinates of the two interior 
control points. In addition the x-coordinates of the interior 
control points were also kept fixed reducing the number of 
variables n to 2.   Boundary integral equation method (BIEM) 
by Liggett and Lui (1983) was used to solve the problem.  The 
use of BIEM reduces the solution of the Laplace equation to a 
set of linear algebraic equations defined only on the domain 
boundary.  
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Figure 6.   Result from the optimization algorithm. 

 
 
An initial shape that was far from the optimum was selected 

to begin the optimization process. The wall to be optimized, the 
fixed lower wall, the inlet and the outlet were each divided into 
20 segments resulting in a total of 80 grid points. This number 
was determined to be adequate from a grid convergence study.  
The initial shape as well as the shape of the wall after 5 and 10 

iterations is shown in Fig. 6. The value of the objective function 
for the initial shape was V= 0.235.  After 5 and 10 iterations V 
reduced to 0.099 and 0.011 respectively.  The shape after 10 
iterations is observed to be nearly a straight line. The entire 
optimization process required approximately 60 direct 
solutions.  

 5.2 Plane symmetric diffuser in laminar flow 

The second problem examined was that of determining the 
shape of a plane symmetric diffuser that leads to the maximum 
pressure rise under certain flow, boundary and geometry 
constraints. The flow is assumed to be steady, laminar 
incompressible flow governed by the Navier-Stokes equations.  
Note that unlike the problem in section 5.1, the flow is no 
longer a potential flow and cannot be treated by a BIEM 
method.  Due to symmetry, only the symmetric half of the 
diffuser is considered and is shown in Fig. 7.  The diffuser 
centerline has symmetry boundary conditions and the upper 
wall is a no-slip wall. A parabolic velocity profile 
corresponding to a fully developed laminar channel flow is 
specified at the inlet. The geometry constraints are: prescribed 
inlet width H, prescribed diffuser length 3H, constant length 
inlet and outlet sections of size 0.75H and 6H respectively. The 
objective is to maximize the pressure rise though diffuser. The 
pressure rise also depends upon the flow rate through the 
diffuser, characterized by the non-dimensional parameter, 
Reynolds number Re = uiH/ν where ν is the kinematic viscosity 
of the fluid and ui is the average inlet velocity. A non-
dimensional pressure rise is defined by a pressure coefficient Cp 
given as,   

        
                 (5) 

  
 
where po and pi  are the area averaged diffuser outlet and 

inlet pressures and ρ is the fluid density.  
  
 
 
 
 
 
 
 

 
Figure 7.  Plane symmetric diffuser. 

 
 
The initial diffuser shape was represented by a Bezier 

curve with the first control point always kept fixed at the inlet 
and the x-coordinate of the others kept fixed during the 
optimization process. The actual control points were 
successively increased as described in Section 4 beginning with 
3 points up to a maximum of 6 control points.  A laminar fluid 
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flow code, CAFFA by Ferziger and Peric (1996), was modified 
for use as the flow solver. 

 
Figure 8 shows a typical grid of 55×10 that was used for 

the computation. The CAFFA flow code is a multi-grid flow 
solver that automatically generates a second finer grid of twice 
the density in each direction, i.e. 110×20 by interpolating the 
original 55×10 grid. 
 
 

 
 
 

Figure 8.   Typical grid of 55x10.  
 
 
Because of the inherent inability of any flow solver to 

accurately predict the pressure coefficient with more that two 
significant figures, the optimization process was terminated 
when the second significant figure in Cp was no longer altered, 
although three significant figures were used in computing the 
steepest direction. The choice of the initial diffuser profile is 
made in the following fashion. The pressure coefficient for a 
given Reynolds number is computed for a progressively 
increasing diffuser area ratio AR (exit width/inlet width) for 
straight walled diffusers.  The pressure coefficient achieves a 
maximum at some value of AR during this process.  The straight 
wall profile corresponding to this area ratio AR is assumed to be 
the initial diffuser profile for a given Reynolds number.  The 
improvement in Cp over the Cp value for a straight walled 
diffuser represents the gain in pressure rise due to shaping of 
the diffuser with a Bezier curve.   

 
Diffuser shape optimization using ideas described in 

Section 4 is carried out for Re = 50, 100, 200 and 400. The 
optimized diffuser shapes are shown in Fig. 9.  Note that only 
the diffusing portion of the upper wall is shown in Fig. 9.  The 
constant width inlet and exit sections are not shown.  The case 
for Re=100 is discussed in further detail.  The optimum shape 
obtained in the present study is compared in Fig. 10 to the 
results of Cabuk and Modi (1992) obtained using an adjoint 
variable method derived using ideas of Pironneau (1974). The 
close agreement in diffuser profiles obtained with these two 
different optimization techniques and two different flow solvers, 
lends a degree of confidence to the present computations.  

 
A plot of Cp versus AR for all the direct solutions is shown 

in Fig. 11 in order to describe the optimization process for this 
particular case. The solid curve represents the straight walled 
diffusers computed in order to select an initial shape.  Each 
direct solution is shown on the plot as a single point. The dotted 
lines connect the points corresponding to the optimum shapes 
obtained at the end of each iteration. The Cp value for the 
optimum shape is 0.45 as compared to 0.41 for the initial shape. 
Observe that the optimum diffuser profile at Re=100 has a 

lower area ratio than the best straight walled diffuser and yet 
produced a larger pressure rise. This is found to be true for all 
the Reynolds numbers that were examined. 
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Figure 9.  Optimum plane diffuser profiles with L/H=3 at Re=50, 

100, 200 and 400. 
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Figure 10.  Optimum plane diffuser profiles with L/H=3 at Re =100. 

The dashed line is the result from Cabuk and Modi (1992)  for a 
grid of 31x11 and  the  solid line is the present result. 
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Figure 11.  Pressure coefficient vs area ratio for plane symmetric 

diffusers with L/H=3 at Re =100. 
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5.3 Axisymmetric diffuser in laminar flow 

The problem of optimizing axisymmetric diffusers in 
laminar flow is addressed next. The diffuser configuration, flow 
assumptions, boundary conditions and the geometry constraints 
are identical to those considered in section 5.2 except that now 
axisymmetric diffusers with inlet diameter D (replacing inlet 
width H) are used instead of plane diffusers.  Once again 
optimum diffusers for laminar flow Reynolds numbers of 50, 
100, 200 and 400 are computed. The final results of the 
optimization process are shown in the Fig. 12. Figure 13 shows 
the convergence of Cp during the optimization process for the 
case of Re=100. 
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Figure 12.  Optimum axisymmetric diffuser profiles with L/D=3 at 

 Re = 50, 100, 200 and 400. 
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Figure 13.  The progression of the pressure coefficient with each 
direct solution during the optimization process of axisymmetric 
diffusers with L/D=3 at Re=100.  Each point represents a single 
direct solution. The solid line segments connect the optimum 

results after each design iteration. 
 
 

6  DISCUSSION 
For the potential flow problem of section 5.1 we verified 

that the algorithm was able to achieve the optimum shape by 
changing as few as two control points. In section 5.2 and 5.3 we 
applied the algorithm to two laminar diffuser problems and the 
results were also encouraging. Significant improvement in Cp's 

for both plane and axisymmetric cases is achieved for all the 
Reynolds numbers in the study.  

 
Consider the result of the optimization process for the 

plane symmetric diffuser at Re=100. The maximum Cp obtained 
from computations is 0.452.  Since we expect no more than a 
two significant figure accuracy from the solver, CAFFA, we 
consider the maximum to be Cp=0.45 and the intermediate 
results with Cp>0.445 obtained during the optimization process 
to correspond to optimum profiles.  With this in mind, the 
optimum region lies above Cp=0.445 as shown in Fig. 14. This 
implies that there is a family of profiles obtained from the 
optimization process that can be considered optimum.  These 
profiles are shown in Fig. 15 corresponding to the points in 
optimum region of Fig. 14.   
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Figure 14.   The progression of pressure coefficient with each 

direct solution during the optimization process of plane diffusers  
with L/H = 3 at Re=100. 
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Figure 15.   Family of optimum plane diffuser profiles with L/H=3 

and Re=100  
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7  SUMMARY 
Constrained shape optimization problems for the design of 

fluid mechanical devices are solved.  These problems highlight 
some of the issues that arise in the integration of CAD with 
CAE. Bezier curves were utilized to represent device shapes 
and to incorporate geometric constraints.   

 
Bezier curves lend themselves to an adaptive increase in 

their degree as needed leading to a richer design space as 
suggested by the optimization algorithm. This advantage was 
exploited in the optimization program that was developed and 
successfully tested. A full factorial design of experiment 
analysis requires 2n direct solutions which can become 
unacceptably large as the number of degrees of freedom n 
increases. This is particularly true of fluid mechanics problems 
where CAE tools are prohibitively CPU intensive because of 
the coupled nonlinear PDE's used to describe the flow physics. 
To make the problem computationally tractable it is imperative 
that the number of degrees of freedom is as small as possible.  
This was achieved by exploiting the property that Bezier curves 
can describe a rich design space with a few control points.  The 
examples we have studied involved up to 100 direct solutions 
and all computations were carried out on a PC.  

 
Future work will be directed towards better geometric 

representation of device shapes using NURBS and improved 
optimization schemes. The search pattern used in our 
optimization algorithms allows us to study the neighborhood 
around any design point quite thoroughly. Future work will also 
explore how this information can lead to a more rational 
approach to robust design. 
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