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ABSTRACT
A method to identify robust designs of mechanical parts

with free-form shapes is proposed. For each design, the
geometry and operating conditions represent one design point
in the design space, with noise altering the design point
leading to a change in performance. A shape optimization
process is conducted for each example problem. Each
successive iteration during the process produces an iterative
design point with the final one being the optimum design.
Once the process is completed, a design of experiment
approach is used to apply noise in order to generate samples
around each and every iterative design point. Then a simple
statistical method is utilized to analyze the samples in order
to evaluate the robustness of each iterative design. The results
show that an optimum design is not necessarily robust.

1. INTRODUCTION
An earlier study (Cholaseuk et al., 1999) explored the

optimum design of fluid flow devices using designed
numerical experiments. The objective function for
optimization took the form of a performance measure, such as
the pressure drop across a diffuser. The geometric shape of
the device was varied in order to maximize this objective
function. In this paper we explore the stability of such
designs.

Engineers refer to the stability of designs as the
robustness of designs. Simply stated, a robust design is one
that delivers roughly the same performance in the presence of
inevitable variations in the manufactured instances of a

product as well as in its operating conditions. A mathematical
abstraction of the notion of robustness is shown in Fig. 1. A
point p in the space P of product and environmental
parameters maps to a point q in the space Q of performance
indicators. Assuming some mild smoothness of this mapping
function, a neighborhood NP(p) maps to a neighborhood
NQ(q). The neighborhoods are shown as shaded regions in
Fig. 1. A robust design is a point p in P whose finite
neighborhood NP(p) maps to a “small” neighborhood NQ(q). In
contrast, an optimum design is a point p in P whose mapping
q in Q achieves the maximum of the desired performance
over Q.

Designers seek optimum designs that are also robust. If
this is not achievable, then suboptimal designs that exhibit
robustness may be acceptable. But any design, optimal or
otherwise, that is not robust is not an acceptable engineering
solution. This opens up several interesting questions. What is
the measure of smallness of the neighborhood NQ(q)? How
can one explore the neighborhood of points in P? We propose
to answer these questions in this paper and test them on
several examples. We make no special assumptions about the
mapping function F except that we have at our disposal a
function evaluator that, given a point p in P, evaluates a point
q in Q. We use computer simulation to perform this
evaluation. We then sample several discrete points in P and
probe the neighborhood of each point for robustness.
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Figure 1. A mapping for a mathematical abstraction of
robustness in design.

A brief literature survey is presented in section 2. A
sampling scheme that chooses a discrete set of points in P is
described in section 3.  Subsequently four example problems
to which the present approach is applied are presented in
section 4. These are
(i) Minimization of the transverse velocity at the inlet and

outlet of a ninety-degree elbow in potential flow,
(ii) Maximization of a pressure rise through a plane laminar

flow diffuser with fixed inlet width and length,
(iii) Minimization of the weight of a cantilever beam with end

load and with a constrained stress limit and
(iv) Minimization of the weight of a torque arm with a

constrained stress limit.
The results are analyzed and discussed in section 5 and
summarized in the last section.

2. LITERATURE SURVEY
Researches have adopted a variety of approaches in the

area of computational shape optimization of mechanical
parts. These include black-box optimization (Cholaseuk et al.,
1999), adjoint operator or optimal control based methods
(Pironneu, 1974, 1984, Cabuk and Modi, 1992) and genetic
algorithms (Richards, 1995). With modeling approximation
and limited solver accuracy, optimum shapes obtained using
computational shape optimization can only be approximate.
Moreover, in practice the mechanical parts may be subjected
to uncontrollable factors (or noise) such as finite
manufacturing tolerances and variations in operating
conditions. In order that a chosen design remains close to
optimal during practical use, the design must be relatively
insensitive to noise. A design that meets these qualifications
will be referred to as a robust design.

Phadke (1989) suggests one way to classify noise by its
source as internal noise, external noise and deterioration.
Unit-to-unit variation due to manufacturing imperfections
such as dimensional tolerances or variations in material
properties is internal noise. External noise consists of changes
in operating conditions such as temperature, humidity etc.
Deterioration refers to changes of the parts from theirs

original state in time due to aging and wear. In this study, the
source of noise is not of concern and hence deterioration will
be considered as part of internal noise.

A robust design, by definition, requires the minimization
of the variance of performance while the goal of an optimum
design is to maximize or minimize the mean value of the
target quantity. To achieve robustness and optimality at the
same time may not always be possible in most cases and a
compromise must be made. Following Taguchi (1986), the
quantity signal-to-noise ratio (SNR) is used in robustization.
It characterizes the ratio of mean performance to variance of
performance under the presence of noise. Three formulations
of SNR's for different objectives are shown in Eq. (1) to (3).
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where iq  (i=1,2,3,…, m) is the performance of neighboring

samples around the design point and represents the effects of

noise.  Moreover mean performance q  and variance 2s are:
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where s is standard deviation.

To compute SNR, noise is applied to each design point.
The performance of each of the m neighbors (due to noise) is
evaluated.  Note that the following quantities are known as
part of design specifications: target range of performance,
range of operating conditions (external noise) and allowable
tolerances (internal noise). In practice, noise occurs in
unpredictable patterns, so there is no obvious way to simulate
noise. Random or systematic patterns such as design of
experiment (full or partial factorial) are the popular choices
for noise simulation. Figure 2 shows the neighbors of the
design point obtained by applying 22 combinations of two
noise factors.
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Figure 2. Neighborhood samplings of the design point.

From Eq. (1) to (3), a larger SNR should lead to a design
that is both robust as well as close to the optimum; so a
process that maximizes SNR would be a good means to
achieve a compromise. However, there are some
disadvantages in the use of SNR. First, it requires numerous
direct solutions in order to simulate the effect of noise. If we
use a design of experiment method to robustize a design with
the n1 design variables and consider n2 noise factors, we
must construct crossed arrays (Myers and Montogomery,
1995). Figure 3 shows a crossed array with n1=2 and n2=3.
The filled circles represent the inner array of design variables
used to estimate derivative information (of SNR with respect
to the design variables). The empty circles refer to the outer
arrays that take into account the effect of noise to compute

SNR for each point of the inner array. A total of 2
n1

× (2
n2

+1)
= 36 direct solutions are needed for one design iteration.
Another disadvantage is an aliasing problem, since mean and
variance are cofounded in SNR. For example, to maximize the
performance, a design with high mean and high variance can
have the same SNR as another design with low mean and low
variance. In such cases, constraints on mean, variance and
range of performance have to be imposed in the optimization
process to determine a feasible region. An example of a
problem one can encounter in using SNR can be found in
Wilde (1991).

With the mean and variance that are computed at the
same time as SNR, and the specification of performance
range, one can also use the Normal distribution
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where q  is the mean and s is the standard deviation, to

determine the probability of failure which is one more
parameter to be concerned in robust design.

Figure 3. Crossed arrays for robustization.

Other than the use of SNR, Cagan and Williams (1993)
propose a method based on an extension of the Lagrangian
and KKT conditions of optimality to take into account the
measurement of flatness and curvature of the objective
function. The method requires the use of second order
derivatives and finally human judgement may be required.
There are several other techniques for robust design such as
worst case analysis, corner space evaluation, etc. A recent
article by Chen and Du (1999) provides a comparison of some
of these methods.

3. METHODOLOGY FOR ROBUSTNESS TESTING
Most applications of robust design techniques have been

to problems with analytical solutions permitting inexpensive
computation. In the present study, we focus on the design of
freeform shapes, which involve many design variables and
where no prior analytical solution to the relationship between
performance and shape is available. Moreover methods such
as worst case analysis may not be appropriate in our
applications since the worst case noise factors are not
necessarily the extreme values of the specifications. And due
to a large number of design variables and time consuming yet
inaccurate iterative direct solution, we cannot afford to use
SNR's as objectives of the designs or the use of Lagrangian
based methods. Our approach to the problem is to first
perform a numerical shape optimization process to maximize
(or minimize) the performance. Then check for robustness of
each iterative design.

To perform the shape optimization we use the same
strategy as in our former study (Cholaseuk et al., 1999). The
solvers used to determine the numerical values of the
objective functions are treated as black boxes. The portions of
the shapes that are to be optimized are represented with cubic
B-spline curves (Hoschek and Lasser, 1993). Fixed
geometrical constraints can be applied to the shape by fixing
the appropriate control points. Coordinates of the “free”
control points become the design variables. Design of

Initial design point
Outer array
of noise

Inner array
of design
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Noise #1

Noise #2
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p
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experiment method (Box et al., 1979) is used to conduct the
search and find the steepest direction (gradient) to adjust the
design variables. The number of control points is
progressively increased as necessary during the iteration
process. The pattern of the search for two design variables is
shown in Fig. 4(a).

Once the optimum shape is obtained in each problem, the
robustness of that shape is explored at each design iteration
by applying noise (internal or external or both) to each
critical design point in Fig. 4(b). A total of 2n factorial
combinations of noise are applied to the design to generate
the neighborhood samples. Direct solution for performance
evaluation is obtained for each sample. Then we compute
SNR, mean, standard deviation and range of the performance
for each iterative design. Using a Normal distribution model,
we also estimate the probability of failure for each design.

These parameters are compared at each design iteration and
the most robust design for each problem is identified.

Figure 4. (a) Search pattern in the design space P for
optimum design, (b) Applying noise to critical points.

Noise in a free form shape can be viewed as changes of
shape within a tolerance envelope of the size ±d as shown in
Fig. 5(a). There are infinite number of free form shapes in the
envelope. In our optimization algorithm, the shapes are
represented by B-spline curves. The number of control points
that define the curve is progressively increased during the
optimization process until no further improvement in
objective function is achieved. As a result, the design from
each successive iteration may be represented with different
number of control points. Since the control points are treated
as design variables subject to noise and since the number of
neighbors for each design point are given by 2n factorial (for
n free control points), the number of neighbors will be
different at each design iteration. The varying number of
neighbors makes it difficult to compare SNR's, standard

deviations and means obtained at design iterations. Moreover,
in practice, noise in free-form shape mechanical parts does
not originate at the designed control points but at the parts
themselves.

To address this problem, once the optimization process is
terminated, the control points themselves are discarded and
only the shapes obtained from design iterations are
considered. Applying the changes directly to the shape
generates noise on each shape. We impose new quadratic B-
spline curves on the shape as noise. Figures 5(b) and (c) show
different shapes obtained by imposing different quadratic B-
spline curves over the designed shape. With this approach we
can control the number of neighbor samples by controlling
the number of the B-spline control points. With the same
numbers of samples, the SNR’s from different design
iterations are comparable. As more control points are used,
more shape variations within the tolerance envelope are
obtained, leading to a better estimate of robustness. From the
convergence study (shown in the discussion), we chose to use
5 free control points (32 samples per design).

(a)

(b)

(c)

Figure 5. (a) Designed shape and tolerance envelope,
(b) 4-control point quadratic B-spline curve overlapping

the designed shape,  (c) 5-control point quadratic B-
spline curve overlapping the designed shape.
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4. EXAMPLE PROBLEMS

Ninety-degree elbow in potential flow
An idealized problem of a two-dimensional potential

flow through a ninety-degree elbow is considered. This
problem does not account for the effects of viscosity, nor does
it allow three-dimensional behavior. However it provides a
test bed for validating the concepts of optimization and robust
design. With a potential flow assumption, the governing
equations for fluid flow are reduced to the Laplace equation.
A boundary element method (Liggett and Lui, 1983) is used
for flow solution after discretizing the boundary into 76
segments. The objective is to find the shape of the inner wall
that minimizes the transverse velocity components at the inlet
and outlet sections. Hence the objective is to minimize the
sum of the modulus of the transverse velocity component at
the inlet and outlet boundaries and is given by

min  q  where ∑=
i

i

nd

d
q

v

ψ
, (7)

         i = inlet and outlet boundary nodes.

For the purpose of examining robustness internal noise
will be generated within a shape tolerance of ±0.01. There is
no external noise introduced in this case. The optimum shape
and some intermediate shapes are shown in Fig. 6. The
optimum shape is obtained at the eighteenth design iteration.
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Figure 6. Evolution toward the optimum shape.

At each design iteration the signal to noise ratio, SNRS

and the standard deviation s is obtained from Eq. (1) and (5).
History of convergence of the objective function, SNRS and
standard deviation are shown in Fig. 7.

The optimum design has an objective function value of
0.3 compared to 2.05 for the initial design. The optimum
shape is found to be robust- the indicators being high SNRS,

low standard deviation and small range of performance
variation. We do not specify the performance range for this
particular example, so we do not look at the probability of
failure here.

Figure 7. Variation of objective function mean along with
the noise on q,  SNRS and s with design iteration.

Plane diffuser in laminar flow
The second problem considered is the design of a plane

symmetric diffuser (symmetric half is shown in Fig. 8) for an
incompressible steady laminar flow governed by the Navier-
Stokes equations. A flow solver described in Ferziger and
Peric (1996) is used to solve for the flow fields. The number
of control volumes used in the diffuser section is 30×10.
Pressure rise in the diffuser is a function of diffuser geometry
and the inlet flow parameters. We try to find a diffuser profile
that maximizes the pressure coefficient, Cp.
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where Pin and Pout are the area-averaged pressures at diffuser
inlet and outlet, uin is the mean inlet velocity and ρ is the
fluid density.  In addition, a worst case minimum value of Cp

=0.42 is specified as a requirement for the optimum design.
Internal noise is generated within a tolerance of ±0.05W.
External noise is generated by changing the operating inflow
Reynolds number of 100 by ±20%. The Reynolds number is

defined as Re =
ρ

µ
u Win

 where µ is the viscosity.
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Figure 8. Plane symmetric diffuser.

The optimum diffuser and some intermediate designs are
shown in Fig. 9. The optimum diffuser shape is obtained at
the eleventh iteration. Convergence history of Cp, SNRL and s
are shown in Fig. 10. The dashed line for Cp represents the
lower performance limit.
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Initial shape

3rd iteration
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11th iteration

Figure 9. Evolution toward the optimum diffuser.

Figure 10. Variation of mean along with the noise on Cp,
SNRL and s with design iteration.

The initial diffuser produces a Cp value of 0.41 while the
optimum diffuser (eleventh design) produces a Cp of 0.46. A
mean Cp under noise is 0.456. We find that the optimum
diffuser is robust even though the ninth design is found to be
actually the most robust by a very small margin. The diffuser
shapes are shown in Fig. 9 for comparison. In the laminar
flow regime the Reynolds number also plays a role in
determining diffuser performance; the pressure coefficient
increases when Re decreases.

Cantilever beam
The optimization problem is to minimize weight of the

cantilever beam of length L = 4 mm and thickness 1 mm,
subject to an end load P = 10 N. Since the beam has a
constant density, we set the objective function to be volume,
V, of the beam. The material has ultimate stress σu = 120
MPa. With a safety factor of 1.2, the maximum design stress
is set to be σd = 100 Mpa. To handle this stress constraint, a
discrete penalty function is used. The objective function, f, is
described in Eq. (9) where σe is the maximum element stress.
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An imposed geometrical constraint is that the beam be
symmetric about the x-axis. Neglecting the weight of the
beam, the analytical solution by beam theory is known to be a
parabola represented by Eq. (10).
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Internal noise is generated within a tolerance of ±0.05 mm. A
finite element code (quadrilateral element) is used to solve for
the stress in each of the 160 elements.  The optimum shape
and some intermediate shapes are shown in Fig. 11. The
optimum shape is obtained at the eleventh design iteration.
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Figure 11. Evolution toward the optimum shape.
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Figure 12. V, Variation of mean along with the noise on σe,
SNRN and s with design iteration.

Torque arm
A problem first introduced by Botkin (1982) where the

objective is to minimize the weight of a torque arm subject to
axial and transverse loads is considered next. Volume V is
used as the objective function, since the density is constant.
Ultimate stress of the material used is σu = 972 MPa. With a
safety factor of 1.2, the design maximum stress is set to be σd

= 810 Mpa. The shape of the straight boundary between the
two holes is to be optimized. A stress constraint is handled by
a discrete penalty function; objective function is described in
Eq. (9). The overall geometry is shown in Fig. 13. The
thickness of the arm is assumed to be 3 mm, radii of the small
and large holes are taken to be 20 mm and 40 mm
respectively. A geometrical constraint that the torque arm be
symmetric about the x-axis is imposed. Internal noise is
within the shape tolerance of ±5 mm. A finite element code
quadrilateral element) is used to solve for the stress in the 282
elements.

Figure 13. Torque arm.

The optimum shape and some intermediate shapes are
shown in Fig. 14. The optimum shape is obtained at the
thirteenth design iteration. Figure 15 shows the convergence
history of V, σe, SNRN and standard deviation. The last two
parameters refer to element stress.

We may choose the design at the third iteration as a
compromise between robust and optimum, because the third
design has a much lower standard deviation and a volume of
74% of the initial design. This volume is not much larger
compared to the minimum volume of 68% of the initial
design for the thirteenth design. But if the ultimate stress of
σu is of concern, all the designs are most likely to fail except
the first design. This is because in designs other than the first
design the means are located near or above the σu lines
implying that there is a greater probability of failure.
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Figure 14. Evolution towards the optimum shape.
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 Figure 15. V, Variation of mean along with the noise on
σe,  SNRN and s with design iteration.

5. DISCUSSION
We have compared the results obtained from the

optimization process for all the four examples to results from
other studies as shown in Fig.16(a) to (d).

Since the information we obtained from sampling is only
a small part of the infinite neighborhood of points that lie
around a design point, we can only predict the possibility of a
design performing in the specified range. When looking at
the distribution curves, we prefer a curve that is high and
narrow (low deviation) and lies within the operating range. In
the diffuser case, we have a very robust design as shown in
Fig. 17. The probability of failure is close to zero. Figure 18
shows the distribution curves for the beam. From the beam
example we choose the tenth iterative design as our robust
design over the eleventh. From a normal distribution, there is
3% probability that the stress limit is exceeded in the tenth
iterative design whereas the similar probability is 35% for the
eleventh. If safety is however a greater concern, one might
prefer to go with the fifth design, which has almost zero
probability of failure but has more weight. The torque arm
problem has the worst situation since most of the designs
have a significant probability of failure, 23% for the third and
64% for the eleventh with only the initial design being really
safe.
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Figure 16. (a) Optimum 90-degree elbow compare to
Cabuk and Modi (1990), (b) Optimum diffuser compare to

Cabuk and Modi (1992), (c) Optimum cantilever beam
compare to the result from beam theory (Eq. (10)), (d)

Optimum torque arm compare to the result from
Richards (1995) (dashed line).
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Figure 17. Normal distribution of Cp of some diffusers

Figure 18. Normal distribution of stress of some
cantilever beam designs

Figure 19. Normal distribution of stress of some torque
arm designs

To determine the effect of the number of samples, a study
was carried out by progressively increasing the number of
control points that generate noise in the shape definition of
the cantilever beam example. The number of samples
increases as 2n for n control points. The values σe, SNRN and s
for n=3,4,5 and 6 are shown in Fig. 20.

Figure 20. Effect of changing number of control points n
for the beam problem

We find that SNR is not as useful in our problems, since
the means and standard deviations provide clearer
information for the selection of the robust design. And in
three examples (Fig. 10, 12 and 15) SNR's are just the
reflection of the standard deviation, hence they give
redundant information.

We observe that the robustness of the first two examples
refers to objective functions that come from integration (sum
of nodal transverse velocity in the first example and area
averaged pressure in the second). In the last two examples,
robustness is based on the stress constraint, which is the local
maximum element stress. By nature, the values from
integration are usually less sensitive to noise than the local
point values.  The physical nature of each problem also plays
a role in robustness of the optimum results. For example,
performance of the optimum diffuser seem to be not very
sensitive to internal noise (shape changes) since for the
optimum design, minor changes in shape do not cause much
change to the whole flow field so the pressure rise does not
change much.  In contrary, for the torque arm problem, minor
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change of shape at some location can cause a large change in
local stress concentration; hence the optimum torque arm is
more sensitive to the internal noise.

6. CONCLUDING REMARKS
A generic black box optimization algorithm is used so

that we do not have to modify the available solvers. The focus
of the study is the examination of the robustness issue,
leading to slower convergence of the optimization process.

In three of the cases considered, the only kind of noise
applied is internal noise (tolerances of designed shapes). For
the diffuser problem both internal and external noise were
considered.  External noise was in the form of a +/-20%
Reynolds number variation. This variation was found to have
a major effect on the diffuser performance.

The physical nature of the problems was found to play a
major role in determining the robustness of the optimum
results. The use of SNR was not sufficient for determining the
robustness of a design. Instead robustness was judged by
considering the mean, standard deviation, range of
performance and probability of failure.
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